Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14203, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648718

RESUMEN

As global temperatures have steadily increased over past decades, studying of the impacts of heat stress on morpho-physiological traits and economic yields of horticultural crops have been increasingly gained attentions by many scientists and farmers. Hot pepper (Capsicum annuum L.) is an important vegetable crop mostly grown in open-fields in South Korea. In this study, the impacts of prolonged heat stress on three hot pepper genotypes differing by levels of stress susceptibility were evaluated. The study was conducted in two different temperature-controlled greenhouses for 75 days. 48 days old plants were grown in control and heat-treated greenhouses where the temperatures had been set at 30 °C and 35 °C during the day for 75 days, respectively. Morphological, physiological, and nutrient characteristics of three accessions were measured. All hot pepper accessions were enabled to recover from prolonged heat stress exposures within approximately a month. The phenomenon of recovery was observed in some significant morphological and physiological characteristics. For example, the plant growth rate and photosynthesis rate significantly increased after 40th days of heat treatment. The heat stress sensitivity varied between genotypes. The plants that produced more fruits over biomass at early stage of heat treatment had relatively slow recovery, resulting in the largest yield loss. This key morphological characteristic can be used for future breeding program to adapt the prolonged heat stress.


Asunto(s)
Capsicum , Capsicum/genética , Genotipo , Respuesta al Choque Térmico/genética , Fitomejoramiento , Temperatura
2.
Genes Genomics ; 44(7): 833-841, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598220

RESUMEN

BACKGROUND: Brassinosteroids (BRs), a group of plant growth hormones, control biomass accumulation and biotic and abiotic stress tolerance, and therefore are highly relevant to agriculture. BRs bind to the BR receptor protein, brassinosteroid insensitive 1 (BRI1), which is classified as a serine/threonine (Ser/Thr) protein kinase. Recently, we reported that BRI1 acts as a dual-specificity kinase both in vitro and in vivo by undergoing autophosphorylation at tyrosine (Tyr) residues. OBJECTIVE: In this study, we characterized the increased leaf growth and early flowering phenotypes of transgenic lines expressing the mutated recombinant protein, BRI1(Y831F)-Flag, compared with those expressing BRI1-Flag. BRI1(Y831F)-Flag transgenic plants showed a reduction in hypocotyl and petiole length compared with BRI1-Flag seedlings. Transcriptome analysis revealed differential expression of flowering time-associated genes (AP1, AP2, AG, FLC, and SMZ) between BRI1(Y831F)-Flag and BRI1-Flag transgenic seedlings. We also performed site-directed mutagenesis of the BRI1 gene, and investigated the effect of methionine (Met) substitution in the extracellular domain (ECD) of BRI1 on plant growth and BR sensitivity by evaluating hypocotyl elongation and root growth inhibition. METHODS: The pBIB-Hyg+-pBR-BRI1-Flag construct(Li et al. 2002) was used as the template for SDM with QuickChange XL Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) to make the SDM mutants. After PCR with SDM kit, add 1 µl of Dpn1 to PCR reaction. Incubate at 37 °C for 2 h to digest parental DNA and then transformed into XL10-gold competent cells. Transcriptome analysis was carried out at the University of Illinois (Urbana-Champaign, Illinois, USA). RNA was prepared and hybridized to the Affymetrix GeneChip Arabidopsis ATH1 Genome Array using the Gene Chip Express Kit (Ambion, Austin, TX, USA). RESULTS: Tyrosine 831 autophosphorylation of BRI1 regulates Arabidopsis flowering time, and mutation of methionine residues in the extracellular domain of BRI1 affects hypocotyl and root length. BRI1(M656Q)-Flag, BRI1(M657Q)-Flag, and BRI1(M661Q)-Flag seedlings were insensitive to the BL treatment and showed no inhibition of root elongation. However, BRI1(M665Q)-Flag and BRI1(M671Q)-Flag seedlings were sensitive to the BL treatment, and exhibited root elongation inhibition. the early flowering phenotype of BRI1(Y831F)-Flag transgenic plants is consistent with the expression levels of key flowering-related genes, including those promoting flowering (AP1, AP2, and AG) and repressing flowering (FLC and SMZ).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Metionina/genética , Metionina/metabolismo , Metionina/farmacología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Plantones/genética , Transducción de Señal/genética , Tirosina/genética , Tirosina/metabolismo , Tirosina/farmacología
3.
Sci Rep ; 11(1): 14328, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253784

RESUMEN

Understanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant 'NW Bigarim' (NB) and susceptible 'Chyung Yang' (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in 'CY' but not in 'NB' seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in 'NB' than 'CY'. Proline content was also significantly higher in 'NB'. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30-32/22-24 °C in day/night). The growth and developmental parameters were investigated until 70 days. 'NB' was significantly affected by leaf heat damages only in fruit yield while 'CY' was in fruit set, number and yield. 'NB' showed fast recovery after heat stress compared to 'CY'. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Respuesta al Choque Térmico/fisiología , Prolina/metabolismo , Termotolerancia
4.
Nat Commun ; 11(1): 5442, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116128

RESUMEN

Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses.


Asunto(s)
Poaceae/genética , Biomasa , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN , Diploidia , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genoma de Planta , Genómica , Modelos Genéticos , Filogenia , Poaceae/clasificación , Poaceae/crecimiento & desarrollo , Poliploidía , Saccharum/genética , Estaciones del Año , Sorghum/genética
5.
Genes Genomics ; 41(5): 499-506, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30830683

RESUMEN

Innate immune signaling of plants is initiated by pattern recognition receptors (PRRs) at the plasma membrane. Upon pathogen attack, PRRs recognize pathogen-associated molecular patterns (PAMPs) via ectodomain and lead to signaling cascade via cytoplasmic kinase domain. PAMP-triggered immunity (PTI) activates basal defense responses sufficient to confer broad-spectrum disease resistance by inhibiting pathogen entry and growth. On the other hand, one of the major virulence factors in plant-pathogenic bacteria is type III secretion system, which can deliver effector proteins into the host cell and modulate host cellular processes. Most type III effectors are implicated in PTI suppression, and PRRs have been identified as targets of multiple type III effectors. Mutants defective in T3SS lack pathogenicity in many bacterial species, revealing that T3SS-mediated PTI suppression is critical for host colonization and subsequent disease development. This review summarizes molecular basis of bacterial pathogen perception by plant PRRs and also interaction between PRRs and type III effectors during early stages of plant-pathogen interaction.


Asunto(s)
Inmunidad de la Planta/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/fisiología , Bacterias/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Innata/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia
6.
Molecules ; 23(1)2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29361797

RESUMEN

Protein post-translational modification by phosphorylation is essential for the activity and stability of proteins in higher plants and underlies their responses to diverse stimuli. There are more than 300 leucine-rich repeat receptor-like kinases (LRR-RLKs), a major group of receptor-like kinases (RLKs) that plays an important role in growth, development, and biotic stress responses in higher plants. To analyze auto- and transphosphorylation patterns and kinase activities in vitro, 43 full-length complementary DNA (cDNA) sequences were cloned from genes encoding LRR-RLKs. Autophosphorylation activity was found in the cytoplasmic domains (CDs) of 18 LRR-RLKs; 13 of these LRR-RLKs with autophosphorylation activity showed transphosphorylation in Escherichiacoli. BRI1-Associated Receptor Kinase (BAK1), which is critically involved in the brassinosteroid and plant innate immunity signal transduction pathways, showed strong auto- and transphosphorylation with multi-specific kinase activity within 2 h of induction of Brassica oleraceae BAK1-CD (BoBAK1-CD) in E. coli; moreover, the carboxy-terminus of LRR-RLKs regulated phosphorylation and kinase activity in Arabidopsis thaliana and vegetative crops.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Brassica/enzimología , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/genética , Biología Computacional/métodos , Mutación , Fosforilación , Filogenia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
7.
Theor Appl Genet ; 129(7): 1357-1372, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27038817

RESUMEN

KEYMESSAGE: This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.


Asunto(s)
Genoma de Planta , Raphanus/genética , Brassica/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Hibridación Genómica Comparativa , ADN de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN
8.
J Agric Food Chem ; 64(1): 61-70, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26672790

RESUMEN

Radish (Raphanus sativus L.), a root vegetable, is rich in glucosinolates (GLs), which are beneficial secondary metabolites for human health. To investigate the genetic variations in GL content in radish roots and the relationship with other root phenotypes, we analyzed 71 accessions from 23 different countries for GLs using HPLC. The most abundant GL in radish roots was glucoraphasatin, a GL with four-carbon aliphatic side chain. The content of glucoraphasatin represented at least 84.5% of the total GL content. Indolyl GL represented only 3.1% of the total GL at its maximum. The principal component analysis of GL profiles with various root phenotypes showed that four different genotypes exist in the 71 accessions. Although no strong correlation with GL content and root phenotype was observed, the varied GL content levels demonstrate the genetic diversity of GL content, and the amount that GLs could be potentially improved by breeding in radishes.


Asunto(s)
Glucosinolatos/química , Extractos Vegetales/química , Raphanus/química , Verduras/química , Cromatografía Líquida de Alta Presión , Humanos , Raíces de Plantas/química , Raíces de Plantas/clasificación , Raíces de Plantas/genética , Raphanus/clasificación , Raphanus/genética , Verduras/clasificación , Verduras/genética
9.
BMC Genomics ; 13: 142, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22524439

RESUMEN

BACKGROUND: Miscanthus (subtribe Saccharinae, tribe Andropogoneae, family Poaceae) is a genus of temperate perennial C4 grasses whose high biomass production makes it, along with its close relatives sugarcane and sorghum, attractive as a biofuel feedstock. The base chromosome number of Miscanthus (x = 19) is different from that of other Saccharinae and approximately twice that of the related Sorghum bicolor (x = 10), suggesting large-scale duplications may have occurred in recent ancestors of Miscanthus. Owing to the complexity of the Miscanthus genome and the complications of self-incompatibility, a complete genetic map with a high density of markers has not yet been developed. RESULTS: We used deep transcriptome sequencing (RNAseq) from two M. sinensis accessions to define 1536 single nucleotide variants (SNVs) for a GoldenGate™ genotyping array, and found that simple sequence repeat (SSR) markers defined in sugarcane are often informative in M. sinensis. A total of 658 SNP and 210 SSR markers were validated via segregation in a full sibling F1 mapping population. Using 221 progeny from this mapping population, we constructed a genetic map for M. sinensis that resolves into 19 linkage groups, the haploid chromosome number expected from cytological evidence. Comparative genomic analysis documents a genome-wide duplication in Miscanthus relative to Sorghum bicolor, with subsequent insertional fusion of a pair of chromosomes. The utility of the map is confirmed by the identification of two paralogous C4-pyruvate, phosphate dikinase (C4-PPDK) loci in Miscanthus, at positions syntenic to the single orthologous gene in Sorghum. CONCLUSIONS: The genus Miscanthus experienced an ancestral tetraploidy and chromosome fusion prior to its diversification, but after its divergence from the closely related sugarcane clade. The recent timing of this tetraploidy complicates discovery and mapping of genetic markers for Miscanthus species, since alleles and fixed differences between paralogs are comparable. These difficulties can be overcome by careful analysis of segregation patterns in a mapping population and genotyping of doubled haploids. The genetic map for Miscanthus will be useful in biological discovery and breeding efforts to improve this emerging biofuel crop, and also provide a valuable resource for understanding genomic responses to tetraploidy and chromosome fusion.


Asunto(s)
Mapeo Cromosómico/métodos , Perfilación de la Expresión Génica , Poaceae/genética , Tetraploidía , Alelos , Biomasa , Cruzamiento , Duplicación Cromosómica/genética , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Sitios Genéticos/genética , Marcadores Genéticos/genética , Genómica , Técnicas de Genotipaje , Haploidia , Repeticiones de Microsatélite/genética , Poaceae/citología , Poaceae/enzimología , Polimorfismo de Nucleótido Simple/genética , Piruvato Ortofosfato Diquinasa/genética , Homología de Secuencia de Ácido Nucleico , Sorghum/genética , Sintenía/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA