Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Mol Med ; 56(4): 877-889, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38580812

RESUMEN

Extracellular vesicles (EVs), including exosomes, are increasingly recognized as potent mediators of intercellular communication due to their capacity to transport a diverse array of bioactive molecules. They assume vital roles in a wide range of physiological and pathological processes and hold significant promise as emerging disease biomarkers, therapeutic agents, and carriers for drug delivery. Exosomes encompass specific groups of membrane proteins, lipids, nucleic acids, cytosolic proteins, and other signaling molecules within their interior. These cargo molecules dictate targeting specificity and functional roles upon reaching recipient cells. Despite our growing understanding of the significance of exosomes in diverse biological processes, the molecular mechanisms governing the selective sorting and packaging of cargo within exosomes have not been fully elucidated. In this review, we summarize current insights into the molecular mechanisms that regulate the sorting of various molecules into exosomes, the resulting biological functions, and potential clinical applications, with a particular emphasis on their relevance in cancer and other diseases. A comprehensive understanding of the loading processes and mechanisms involved in exosome cargo sorting is essential for uncovering the physiological and pathological roles of exosomes, identifying therapeutic targets, and advancing the clinical development of exosome-based therapeutics.


Asunto(s)
Exosomas , Neoplasias , Exosomas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Neoplasias/terapia , Animales , Comunicación Celular , Transporte Biológico
2.
Exp Mol Med ; 55(11): 2357-2375, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37907739

RESUMEN

Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.


Asunto(s)
Dopamina , Proteínas de Transporte Vesicular de Monoaminas , Animales , Ratones , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Terminales Presinápticos/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
4.
Exp Mol Med ; 55(8): 1573-1594, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37612413

RESUMEN

Death is the inevitable fate of all living organisms, whether at the individual or cellular level. For a long time, cell death was believed to be an undesirable but unavoidable final outcome of nonfunctioning cells, as inflammation was inevitably triggered in response to damage. However, experimental evidence accumulated over the past few decades has revealed different types of cell death that are genetically programmed to eliminate unnecessary or severely damaged cells that may damage surrounding tissues. Several types of cell death, including apoptosis, necrosis, autophagic cell death, and lysosomal cell death, which are classified as programmed cell death, and pyroptosis, necroptosis, and NETosis, which are classified as inflammatory cell death, have been described over the years. Recently, several novel forms of cell death, namely, mitoptosis, paraptosis, immunogenic cell death, entosis, methuosis, parthanatos, ferroptosis, autosis, alkaliptosis, oxeiptosis, cuproptosis, and erebosis, have been discovered and advanced our understanding of cell death and its complexity. In this review, we provide a historical overview of the discovery and characterization of different forms of cell death and highlight their diversity and complexity. We also briefly discuss the regulatory mechanisms underlying each type of cell death and the implications of cell death in various physiological and pathological contexts. This review provides a comprehensive understanding of different mechanisms of cell death that can be leveraged to develop novel therapeutic strategies for various diseases.


Asunto(s)
Apoptosis , Piroptosis , Humanos , Muerte Celular , Necrosis , Inflamación
5.
Exp Mol Med ; 55(8): 1720-1733, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37524868

RESUMEN

Autophagy functions in cellular quality control and metabolic regulation. Dysregulation of autophagy is one of the major pathogenic factors contributing to the progression of nonalcoholic fatty liver disease (NAFLD). Autophagy is involved in the breakdown of intracellular lipids and the maintenance of healthy mitochondria in NAFLD. However, the mechanisms underlying autophagy dysregulation in NAFLD remain unclear. Here, we demonstrate that the hepatic expression level of Thrap3 was significantly increased in NAFLD conditions. Liver-specific Thrap3 knockout improved lipid accumulation and metabolic properties in a high-fat diet (HFD)-induced NAFLD model. Furthermore, Thrap3 deficiency enhanced autophagy and mitochondrial function. Interestingly, Thrap3 knockout increased the cytosolic translocation of AMPK from the nucleus and enhanced its activation through physical interaction. The translocation of AMPK was regulated by direct binding with AMPK and the C-terminal domain of Thrap3. Our results indicate a role for Thrap3 in NAFLD progression and suggest that Thrap3 is a potential target for NAFLD treatment.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/genética , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factores de Transcripción/metabolismo , Humanos , Células Hep G2
6.
Nucleic Acids Res ; 51(15): 7936-7950, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37378431

RESUMEN

Replication protein A (RPA), a eukaryotic single-stranded DNA (ssDNA) binding protein, dynamically interacts with ssDNA in different binding modes and plays essential roles in DNA metabolism such as replication, repair, and recombination. RPA accumulation on ssDNA due to replication stress triggers the DNA damage response (DDR) by activating the ataxia telangiectasia and RAD3-related (ATR) kinase, which phosphorylates itself and downstream DDR factors, including RPA. We recently reported that the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF), a neuronal protein associated with Kallmann syndrome, promotes RPA32 phosphorylation via ATR upon replication stress. However, how NSMF enhances ATR-mediated RPA32 phosphorylation remains elusive. Here, we demonstrate that NSMF colocalizes and physically interacts with RPA at DNA damage sites in vivo and in vitro. Using purified RPA and NSMF in biochemical and single-molecule assays, we find that NSMF selectively displaces RPA in the more weakly bound 8- and 20-nucleotide binding modes from ssDNA, allowing the retention of more stable RPA molecules in the 30-nt binding mode. The 30-nt binding mode of RPA enhances RPA32 phosphorylation by ATR, and phosphorylated RPA becomes stabilized on ssDNA. Our findings provide new mechanistic insight into how NSMF facilitates the role of RPA in the ATR pathway.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteína de Replicación A , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN/genética , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/metabolismo , Humanos
7.
Life Sci ; 326: 121816, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37271452

RESUMEN

AIMS: The aim of this study is to evaluate the effects of patulin on hepatic lipid metabolism and mitochondrial oxidative function and elucidate the underlying molecular mechanisms. MAIN METHODS: The effects of patulin on hepatic lipid accumulation were evaluated in free fatty acid-treated AML12 or HepG2 cells through oil red O staining, triglyceride assay, real-time polymerase chain reaction, and western blotting. Alteration of mitochondrial oxidative capacity by patulin treatment was determined using Seahorse analysis to measure the oxygen consumption rate. KEY FINDINGS: The increased amounts of lipid droplets induced by free fatty acids were significantly reduced by patulin treatment. Patulin markedly activated the CaMKII/AMP-activated protein kinase (AMPK)/proliferator-activated receptor-γ coactivator (PGC)-1α signaling pathway in hepatocytes, reduced the expression of sterol regulatory element binding protein 1c (SREBP-1c) and lipogenic genes, and increased the expression of genes related to mitochondrial fatty acid oxidation. In addition, patulin treatment enhanced the mitochondrial consumption rate and increased the expression of mitochondrial oxidative phosphorylation proteins in HepG2 hepatocytes. The effects of patulin on anti-lipid accumulation; SREBP-1c, PGC-1α, and carnitine palmitoyltransferase 1 expression; and mitochondrial oxidative capacity were significantly prevented by compound C, an AMPK inhibitor. SIGNIFICANCE: Patulin is a potent inducer of the AMPK pathway, and AMPK-mediated mitochondrial activation is required for the efficacy of patulin to inhibit hepatic lipid accumulation. This study is the first to report that patulin is a promising bioactive compound that prevents the development and worsening of fatty liver diseases, including non-alcoholic fatty liver disease, by improving mitochondrial quality and lipid metabolism.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Patulina , Humanos , Lipogénesis , Patulina/farmacología , Patulina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Células Hep G2 , Ácidos Grasos no Esterificados/metabolismo , Respiración
8.
Dev Cell ; 58(4): 320-334.e8, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36800996

RESUMEN

Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.


Asunto(s)
Exosomas , Neoplasias , Humanos , Animales , Ratones , Exosomas/metabolismo , Proteómica , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Transporte de Proteínas , Transporte Biológico , Cuerpos Multivesiculares/metabolismo , Neoplasias/metabolismo , Proteínas del Ojo/metabolismo , Glicoproteínas de Membrana/metabolismo
9.
Phys Act Nutr ; 27(4): 41-47, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38297475

RESUMEN

PURPOSE: This review aimed to comprehensively explore and elucidate multifaceted neutrophils in breast cancer, particularly in the context of physical activity. Neutrophils play a critical role in the tumor microenvironment and systemic immune response, despite their short half-life and terminal differentiation. Through a thorough review of research related to changes in immunity in breast cancer during exercise, this review aims to provide comprehensive insights into immunological changes, especially focusing on neutrophils. Recognizing that much of the existing research has predominantly focused on T cells and nature killer (NK) cells, our review seeks to shift the spotlight toward understanding how exercise affects neutrophils, a less-explored but critical immune response component in breast cancer. METHODS: This study involved an extensive review of the literature (from 2000 to 2023) using the PubMed, Science Direct, and Google Scholar databases. The keywords chosen for the searches were "immune cells and exercise," "exercise and breast cancer," "tumor microenvironment and neutrophils," and "neutrophils and exercise and breast cancers." RESULTS: Neutrophils in the tumor microenvironment can exhibit distinct phenotypes and functions. These differences have yielded conflicting results regarding tumor progression. Exercise plays a positive role in breast cancer and alters the immune system. Physical activity can quantitatively and functionally regulate neutrophils under various conditions such as metabolic disruption or senescence. CONCLUSION: This short communication outlines exercise-induced neutrophil diversification and its role in breast cancer progression, both within and systemically within the tumor microenvironment. Exercise may provide benefits through the potential neutrophil involvement in breast cancer.

10.
J Control Release ; 349: 367-378, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35809662

RESUMEN

The TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer drug candidate because it selectively binds to the proapoptotic death receptors, which are frequently overexpressed in a wide range of cancer cells, subsequently inducing strong apoptosis in these cells. However, the therapeutic benefit of TRAIL has not been clearly proven, mainly because of its poor pharmacokinetic characteristics and frequent resistance to its application caused by the activation of a survival signal via the EGF/epidermal growth factor receptor (EGFR) signaling pathway. Here, a lumazine synthase protein cage nanoparticle isolated from Aquifex aeolicus (AaLS) was used as a multiple ligand-displaying nanoplatform to display polyvalently both TRAIL and EGFR binding affibody molecules (EGFRAfb) via a SpyTag/SpyCatcher protein-ligation system, to form AaLS/TRAIL/EGFRAfb. The dual-ligand-displaying AaLS/TRAIL/EGFRAfb exhibited a dramatically enhanced cytotoxicity on TRAIL-resistant and EGFR-overexpressing A431 cancer cells in vitro, effectively disrupting the EGF-mediated EGFR survival signaling pathway by blocking EGF/EGFR binding as well as strongly activating both the extrinsic and intrinsic apoptotic pathways synergistically. The AaLS/TRAIL/EGFRAfb selectively targeted A431 cancer cells in vitro and actively reached the tumor sites in vivo. The A431 tumor-bearing mice treated with AaLS/TRAIL/EGFRAfb exhibited a significant suppression of the tumor growth without any significant side effects. Collectively, these findings showed that the AaLS/TRAIL/EGFRAfb could be used as an effective protein-based therapeutic for treating EGFR-positive cancers, which are difficult to manage using mono-therapeutic approaches.


Asunto(s)
Antineoplásicos , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Factor de Crecimiento Epidérmico , Receptores ErbB/metabolismo , Ligandos , Ratones , Receptores de Muerte Celular , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
11.
Cells ; 11(5)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269393

RESUMEN

Mitochondria are subcellular organelles that are a hub for key biological processes, such as bioenergetic, biosynthetic, and signaling functions. Mitochondria are implicated in all oncogenic processes, from malignant transformation to metastasis and resistance to chemotherapeutics. The harsh tumor environment constantly exposes cancer cells to cytotoxic stressors, such as nutrient starvation, low oxygen, and oxidative stress. Excessive or prolonged exposure to these stressors can cause irreversible mitochondrial damage, leading to cell death. To survive hostile microenvironments that perturb mitochondrial function, cancer cells activate a stress response to maintain mitochondrial protein and genome integrity. This adaptive mechanism, which is closely linked to mitochondrial function, enables rapid adjustment and survival in harsh environmental conditions encountered during tumor dissemination, thereby promoting cancer progression. In this review, we describe how the mitochondria stress response contributes to the acquisition of typical malignant traits and highlight the potential of targeting the mitochondrial stress response as an anti-cancer therapeutic strategy.


Asunto(s)
Fenómenos Biológicos , Neoplasias , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neoplasias/metabolismo , Estrés Oxidativo , Microambiente Tumoral
12.
Elife ; 102021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34964438

RESUMEN

Background: Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation and imbalances in lipid metabolism in the liver. Although nuclear receptors (NRs) play a crucial role in hepatic lipid metabolism, the underlying mechanisms of NR regulation in NAFLD remain largely unclear. Methods: Using network analysis and RNA-seq to determine the correlation between NRs and microRNA in human NAFLD patients, we revealed that MIR20B specifically targets PPARA. MIR20B mimic and anti-MIR20B were administered to human HepG2 and Huh-7 cells and mouse primary hepatocytes as well as high-fat diet (HFD)- or methionine-deficient diet (MCD)-fed mice to verify the specific function of MIR20B in NAFLD. We tested the inhibition of the therapeutic effect of a PPARα agonist, fenofibrate, by Mir20b and the synergic effect of combination of fenofibrate with anti-Mir20b in NAFLD mouse model. Results: We revealed that MIR20B specifically targets PPARA through miRNA regulatory network analysis of nuclear receptor genes in NAFLD. The expression of MIR20B was upregulated in free fatty acid (FA)-treated hepatocytes and the livers of both obesity-induced mice and NAFLD patients. Overexpression of MIR20B significantly increased hepatic lipid accumulation and triglyceride levels. Furthermore, MIR20B significantly reduced FA oxidation and mitochondrial biogenesis by targeting PPARA. In Mir20b-introduced mice, the effect of fenofibrate to ameliorate hepatic steatosis was significantly suppressed. Finally, inhibition of Mir20b significantly increased FA oxidation and uptake, resulting in improved insulin sensitivity and a decrease in NAFLD progression. Moreover, combination of fenofibrate and anti-Mir20b exhibited the synergic effect on improvement of NAFLD in MCD-fed mice. Conclusions: Taken together, our results demonstrate that the novel MIR20B targets PPARA, plays a significant role in hepatic lipid metabolism, and present an opportunity for the development of novel therapeutics for NAFLD. Funding: This research was funded by Korea Mouse Phenotyping Project (2016M3A9D5A01952411), the National Research Foundation of Korea (NRF) grant funded by the Korea government (2020R1F1A1061267, 2018R1A5A1024340, NRF-2021R1I1A2041463, 2020R1I1A1A01074940, 2016M3C9A394589324), and the Future-leading Project Research Fund (1.210034.01) of UNIST.


Asunto(s)
Fenofibrato/farmacología , Hipolipemiantes/farmacología , Metabolismo de los Lípidos , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR alfa/genética , Animales , Femenino , Humanos , Masculino , Ratones , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , PPAR alfa/metabolismo
13.
Biochem Biophys Res Commun ; 577: 103-109, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34509721

RESUMEN

As essential phospholipid signaling regulators, phospholipase C (PLC)s are activated by various extracellular ligands and mediate intracellular signal transduction. PLCγ1 is involved in regulating various cancer cell functions. However, the precise in vivo link between PLCγ1 and cancer behavior remains undefined. To investigate the role of PLCγ1 in colorectal carcinogenesis, we generated an intestinal tissue-specific Plcg1 knock out (KO) in adenomatous polyposis coli (Apc) Min/+ mice. Plcg1 deficiency in ApcMin/+ mice showed earlier death, with a higher colorectal tumor incidence in both number and size than in wild-type mice. Mechanistically, inhibition of PLCγ1 increased the levels of its substrate phosphoinositol 4,5-bisphosphate (PIP2) at the plasma membrane and promoted the activation of Wnt receptor low-density lipoprotein receptor-related protein 6 (LRP6) by glycogen synthase kinase 3ß (GSK3ß) to enhance ß-catenin signaling. Enhanced cell proliferation and Wnt/ß-catenin signaling were observed in colon tumors from Plcg1 KO mice. Furthermore, low PLCγ1 expression was associated with a poor prognosis of colon cancer patients. Collectively, we demonstrated the role of PLCγ1 in vivo as a tumor suppressor relationship between the regulation of the PIP2 level and Wnt/ß-catenin-dependent intestinal tumor formation.


Asunto(s)
Proliferación Celular/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Fosfolipasa C gamma/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Intestinos/enzimología , Intestinos/patología , Estimación de Kaplan-Meier , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C gamma/deficiencia , beta Catenina/metabolismo
14.
Nucleic Acids Res ; 49(10): 5605-5622, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33963872

RESUMEN

Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ARN/metabolismo , Proteína de Replicación A/metabolismo , Factores de Transcripción/fisiología , Animales , Replicación del ADN , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados
15.
Oncogenesis ; 10(2): 18, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637676

RESUMEN

Mitochondrial proteases are key components in mitochondrial stress responses that maintain proteostasis and mitochondrial integrity in harsh environmental conditions, which leads to the acquisition of aggressive phenotypes, including chemoresistance and metastasis. However, the molecular mechanisms and exact role of mitochondrial proteases in cancer remain largely unexplored. Here, we identified functional crosstalk between LONP1 and ClpP, which are two mitochondrial matrix proteases that cooperate to attenuate proteotoxic stress and protect mitochondrial functions for cancer cell survival. LONP1 and ClpP genes closely localized on chromosome 19 and were co-expressed at high levels in most human cancers. Depletion of both genes synergistically attenuated cancer cell growth and induced cell death due to impaired mitochondrial functions and increased oxidative stress. Using mitochondrial matrix proteomic analysis with an engineered peroxidase (APEX)-mediated proximity biotinylation method, we identified the specific target substrates of these proteases, which were crucial components of mitochondrial functions, including oxidative phosphorylation, the TCA cycle, and amino acid and lipid metabolism. Furthermore, we found that LONP1 and ClpP shared many substrates, including serine hydroxymethyltransferase 2 (SHMT2). Inhibition of both LONP1 and ClpP additively increased the amount of unfolded SHMT2 protein and enhanced sensitivity to SHMT2 inhibitor, resulting in significantly reduced cell growth and increased cell death under metabolic stress. Additionally, prostate cancer patients with higher LONP1 and ClpP expression exhibited poorer survival. These results suggest that interventions targeting the mitochondrial proteostasis network via LONP1 and ClpP could be potential therapeutic strategies for cancer.

16.
Int J Biol Macromol ; 175: 171-178, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33549659

RESUMEN

Covalent protein-ligation methods were used not only to visualize the localization of proteins of interest in cells, but also to study the topology of plasma and subcellular organelle membrane proteins using fluorescent cell imaging. A 13-amino-acid SpyTag (ST) peptide was genetically introduced either into a variety of subcellular proteins of interest or into different positions of plasma or subcellular organelle membrane proteins individually. Conversely, a 15 kDa SpyCatcher (SC) protein was chemically conjugated with either fluorescent dyes or horseradish peroxidase (HRP) via a thiol-maleimide reaction. The extracellular ST-fused plasma membrane proteins were efficiently labeled with the fluorescent-dye-conjugated SC in both live and permeabilized cells, whereas the intracellularly localized ST-fused subcellular proteins were only labeled in permeabilized cells because of the limited accessibility of the fluorescent-dye-conjugated SC to the membrane. The fluorescent-dye-labeled SC together with selective membrane-permeabilizing agents successfully labeled the plasma or the subcellular organelle membrane proteins in a topology-dependent manner. Moreover, the HRP-conjugated SC not only successfully labeled the ST-fused plasma membrane proteins, thus significantly enhancing fluorescent signals in combination with the tyramide signal amplification agents, but also ligated with an external ST-fused target ligand, thus selectively binding to the endogenously expressed cellular receptors of the target cancer cells.


Asunto(s)
Proteínas de la Membrana/química , Péptidos/química , Membrana Celular/química , Membrana Celular/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Ingeniería de Proteínas/métodos
17.
Exp Mol Med ; 52(6): 940-950, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32504039

RESUMEN

The endoplasmic reticulum (ER) stress response is an adaptive mechanism that is activated upon disruption of ER homeostasis and protects the cells against certain harmful environmental stimuli. However, critical and prolonged cell stress triggers cell death. In this study, we demonstrate that Flightless-1 (FliI) regulates ER stress-induced apoptosis in colon cancer cells by modulating Ca2+ homeostasis. FliI was highly expressed in both colon cell lines and colorectal cancer mouse models. In a mouse xenograft model using CT26 mouse colorectal cancer cells, tumor formation was slowed due to elevated levels of apoptosis in FliI-knockdown (FliI-KD) cells. FliI-KD cells treated with ER stress inducers, thapsigargin (TG), and tunicamycin exhibited activation of the unfolded protein response (UPR) and induction of UPR-related gene expression, which eventually triggered apoptosis. FliI-KD increased the intracellular Ca2+ concentration, and this upregulation was caused by accelerated ER-to-cytosolic efflux of Ca2+. The increase in intracellular Ca2+ concentration was significantly blocked by dantrolene and tetracaine, inhibitors of ryanodine receptors (RyRs). Dantrolene inhibited TG-induced ER stress and decreased the rate of apoptosis in FliI-KD CT26 cells. Finally, we found that knockdown of FliI decreased the levels of sorcin and ER Ca2+ and that TG-induced ER stress was recovered by overexpression of sorcin in FliI-KD cells. Taken together, these results suggest that FliI regulates sorcin expression, which modulates Ca2+ homeostasis in the ER through RyRs. Our findings reveal a novel mechanism by which FliI influences Ca2+ homeostasis and cell survival during ER stress.


Asunto(s)
Calcio/metabolismo , Neoplasias Colorrectales/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Proteínas de Microfilamentos/metabolismo , Transactivadores/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Neoplasias Colorrectales/genética , Estrés del Retículo Endoplásmico/genética , Humanos , Immunoblotting , Masculino , Ratones , Proteínas de Microfilamentos/genética , Transactivadores/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Exp Mol Med ; 52(1): 79-91, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31956271

RESUMEN

The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity.


Asunto(s)
Antineoplásicos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Células HeLa , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Purinas/metabolismo
19.
FASEB J ; 34(1): 1270-1287, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914593

RESUMEN

Dysregulation of the adipo-osteogenic differentiation balance of mesenchymal stem cells (MSCs), which are common progenitor cells of adipocytes and osteoblasts, has been associated with many pathophysiologic diseases, such as obesity, osteopenia, and osteoporosis. Growing evidence suggests that lipid metabolism is crucial for maintaining stem cell homeostasis and cell differentiation; however, the detailed underlying mechanisms are largely unknown. Here, we demonstrate that glucosylceramide (GlcCer) and its synthase, glucosylceramide synthase (GCS), are key determinants of MSC differentiation into adipocytes or osteoblasts. GCS expression was increased during adipogenesis and decreased during osteogenesis. Targeting GCS using RNA interference or a chemical inhibitor enhanced osteogenesis and inhibited adipogenesis by controlling the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ). Treatment with GlcCer sufficiently rescued adipogenesis and inhibited osteogenesis in GCS knockdown MSCs. Mechanistically, GlcCer interacted directly with PPARγ through A/B domain and synergistically enhanced rosiglitazone-induced PPARγ activation without changing PPARγ expression, thereby treatment with exogenous GlcCer increased adipogenesis and inhibited osteogenesis. Animal studies demonstrated that inhibiting GCS reduced adipocyte formation in white adipose tissues under normal chow diet and high-fat diet feeding and accelerated bone repair in a calvarial defect model. Taken together, our findings identify a novel lipid metabolic regulator for the control of MSC differentiation and may have important therapeutic implications.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular , Glucosilceramidas/metabolismo , Glucosiltransferasas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , PPAR gamma/metabolismo , Animales , Glucosilceramidas/genética , Glucosiltransferasas/genética , Humanos , Ratones , PPAR gamma/genética
20.
Oncogene ; 39(3): 664-676, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31534187

RESUMEN

Integrin beta 4 (ITGB4) overexpression in cancer cells contributes to cancer progression. However, the role of stromal ITGB4 expression in cancer progression remains poorly understood, despite stromal ITGB4 overexpression in malignant cancers. In our study, ITGB4-overexpressing triple negative breast cancer (TNBC) cells provided cancer-associated fibroblasts (CAFs) with ITGB4 proteins via exosomes, which induced BNIP3L-dependent mitophagy and lactate production in CAFs. In coculture assays, the ITGB4-induced mitophagy and glycolysis were suppressed in CAFs by knocking down ITGB4 or inhibiting exosome generation in MDA-MB-231, or blocking c-Jun or AMPK phosphorylation in CAFs. ITGB4-overexpressing CAF-conditioned medium promoted the proliferation, epithelial-to-mesenchymal transition, and invasion of breast cancer cells. In a co-transplant mouse model, MDA-MB-231 made a bigger tumor mass with CAFs than ITGB4 knockdown MDA-MB-231. Herein, we presented how TNBC-derived ITGB4 protein triggers glycolysis in CAFs via BNIP3L-dependent mitophagy and suggested the possibility that ITGB4-induced mitophagy could be targeted as a cancer therapy.


Asunto(s)
Fibroblastos Asociados al Cáncer/patología , Exosomas/metabolismo , Integrina beta4/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Mama/patología , Mama/cirugía , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Transición Epitelial-Mesenquimal , Femenino , Técnicas de Silenciamiento del Gen , Glucólisis , Humanos , Integrina beta4/genética , Proteínas de la Membrana/metabolismo , Ratones , Mitofagia , Comunicación Paracrina , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias de la Mama Triple Negativas/cirugía , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...