Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 35(2): 381-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523095

RESUMEN

Soil microorganisms are important components of terrestrial ecosystems, affecting soil formation and fertility, plant growth and stress tolerance, nutrient turnover and carbon storage. In this study, we collected soil samples (humus layer, 0-10 cm, 10-20 cm, 20-40 cm, and 40-80 cm) from Caragana jubata shrubland in Shanxi subalpine to explore the composition, diversity, and assembly of soil bacterial communities at different depths across the soil profile. The results showed that Actinomycota (19%-28%), Chloromycota (10%-36%) and Acidobacteria (15%-24%), and Proteobacteria (9%-25%) were the dominant bacterial phyla. α-diversity of soil bacterial community significantly decreased with the increases of soil depth. Soil bacterial ß-diversity varied across different soil depths. Soil pH, water content, and enzyme activity were the main ecological factors affecting the distribution of soil bacterial communities. Soil bacterial communities had more complex interactions in humus layer and 0-10 cm layer. On the whole, soil bacterial communities were dominated by coexistence in C. jubata shrubland, and the soil bacterial community assembly was driven by random process.


Asunto(s)
Caragana , Suelo , Suelo/química , Ecosistema , Microbiología del Suelo , Bacterias , China
2.
Sci Total Environ ; 917: 170386, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38280613

RESUMEN

Unraveling the drivers controlling the assembly and stability of functional communities is a central issue in ecology. Despite extensive research and data, relatively little attention has been paid on the importance of biotic factors and, in particular, on the trophic interaction for explaining the assembly of microbial community. Here, we examined the diversity, assembly, and stability of nirS-, nirK-, and nosZ-type denitrifying bacterial communities in copper-tailings drainages of the Shibahe tailings reservoir in Zhongtiao Mountain, China's. We found that components of nirS-, nirK-, and nosZ-type denitrifying bacterial community diversity, such as taxon relative abundance, richness, and copy number, were strongly correlated with protist community composition and diversity. Assembly of the nirK-type denitrifying bacterial community was governed by dispersal limitation, whereas those of nirS- and nosZ-type communities were controlled by homogeneous selection. The relative importance of protist diversity in the assembly of nirK- and nosZ-type denitrifying bacterial communities was greater than that in nirS-type assembly. In addition, protists reduced the stability of the co-occurrence network of the nosZ-type denitrifying bacterial community. Compared with eukaryotic algae, protozoa had a greater impact on the stability of denitrifying bacterial community co-occurrence networks. Generally, protists affected the assembly and community stability of denitrifying bacteria in copper-tailings drainages. Our findings thus emphasize the importance of protists on affecting the assembly and community stability of denitrifying bacteria in copper-tailings drainages and may be useful for predicting changes in the ecological functions of microorganisms.


Asunto(s)
Cobre , Microbiología del Suelo , Bacterias , Desnitrificación , Suelo
3.
Ecotoxicol Environ Saf ; 270: 115904, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181605

RESUMEN

Soil bacterial and fungal communities play key roles in the degradation of organic contaminants, and their structure and function are regulated by bottom-up and top-down factors. Microbial ecological effects of polycyclic aromatic hydrocarbons (PAHs) and trophic interactions among protozoa and bacteria/fungi in PAH-polluted soils have yet to be determined. We investigated the trophic interactions and structure of the microbiome in PAH-contaminated wasteland and farmland soils. The results indicated that the total concentration of the 16 PAHs (∑PAHs) was significantly correlated with the Shannon index, NMDS1 and the relative abundances of bacteria, fungi and protozoa (e.g., Pseudofungi) in the microbiome. Structural equation modelling and linear fitting demonstrated cascading relationships among PAHs, protozoan and bacterial/fungal communities in terms of abundance and diversity. Notably, individual PAHs were significantly correlated with microbe-grazing protozoa at the genus level, and the abundances of these organisms were significantly correlated with those of PAH-degrading bacteria and fungi. Bipartite networks and linear fitting indicated that protozoa indirectly modulate PAH degradation by regulating PAH-degrading bacterial and fungal communities. Therefore, protozoa might be involved in regulating the microbial degradation of PAHs by predation in contaminated soil.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Bacterias/metabolismo , Biodegradación Ambiental , Suelo/química , Hongos/metabolismo , Contaminantes del Suelo/análisis , Microbiología del Suelo
4.
Fungal Biol ; 127(10-11): 1426-1438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37993254

RESUMEN

Among influencing biotic and abiotic factors, microorganisms predominate litter decomposition, playing an important role in maintaining the ecosystem material cycle. Bothriochloa ischaemum was the dominant plant species in China's Eighteen River tailings dam, and it was selected as the research object. We explored the dynamic of fungal community characteristics in B. ischaemum litter during different decomposition stages and investigated relevant driving factors affecting associative dynamic changes. Results showed that Ascomycetes and Basidiomycetes were the dominant phyla during litter decomposition. At a class level, the relative abundance of Dothideomycetes gradually decreased as litter decomposition progressed while Sordariomycetes gradually increased, ultimately becoming the dominant class. The community structure of the fungal community was mainly affected by litter pH, total carbon (TC), and copper (Cu) content. The fungal community's network structure was the most complex compared to other decomposition stages after 200 days of litter decomposition. Additionally, the fungal community's modularity gradually increased, while the degree of functional differentiation also increased, strengthening fungal community stability during litter decomposition. This study clarifies fungal community structure during litter decomposition in this copper tailings area, and provides a scientific basis for further improving soil fertility and nutrient cycling in mining areas.


Asunto(s)
Cobre , Micobioma , Ecosistema , Poaceae , Minería , Suelo/química , Microbiología del Suelo , Hojas de la Planta/microbiología
5.
Microbiol Spectr ; 11(6): e0241123, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37787559

RESUMEN

IMPORTANCE: As an important part of microbial food webs, protists transfer organic carbon and nutrients to higher trophic levels in aquatic ecosystems. Protist predation often influences the abundance and composition of bacterial communities. However, we still do not understand whether and how predation affects the complexity and stability of microbial food webs. This study assessed the seasonal dynamic characteristics and driving factors of microbial food webs in terms of complexity and stability. Our findings have implications for future surveys to reveal the effects of climate and environmental changes.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Lagos , Conducta Predatoria , Eucariontes
6.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37777841

RESUMEN

AIMS: The gut microbiome has been recognized as a significant contributor to primary hepatocellular carcinoma (HCC), with mounting evidence indicating associations between bacterial components and cancers of the digestive system. METHODS AND RESULTS: Here, to characterize gut bacterial signature in patients with primary HCC and to assess the diagnostic potential of bacterial taxa for primary HCC, 21 HCC patients and 21 healthy first-degree relatives (control group) were enrolled in this study. Bacterial DNA in the fecal samples was quantified by 16S rRNA gene sequencing. We found that 743 operational taxonomic units (OTUs) were shared between patients with primary HCC and healthy controls. Of these, 197 OTUs were unique to patients with primary HCC, while 95 OTUs were unique to healthy subjects. Additionally, we observed significant differences in the abundance of Ruminococcaceae_UCG-014 and Romboutsia between patients with primary HCC and their healthy first-degree relatives. Besides, the relative abundance of Ruminococcaceae_UCG-014 and Prevotella_9 was positively correlated with physiological indicators including AST, ALT, ALB, or TBIL. Signature bacterial taxa could serve as non-invasive biomarkers, of which Romboutsia and Veillonella were identified as differential taxa in fecal samples from patients with HCC compared to healthy controls. Romboutsia showed a strong association with HCC (AUC = 0.802). Additionally, the combination of Romboutsia and Veillonella (AUC = 0.812) or the grouping of Fusobacterium, Faccalibacterium, and Peptostreptococcacae together (AUC = 0.762) exhibited promising outcomes for the diagnosis of HCC. CONCLUSIONS: The composition of gut microbes in patients with HCC was found to be significantly altered. Differential taxa Romboutsia, Veillonella, and Peptostreptococcacae could be tested for identification of HCC.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Lactobacillales , Neoplasias Hepáticas , Humanos , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Neoplasias Hepáticas/genética , Bacterias/genética , Lactobacillales/genética
7.
Front Plant Sci ; 14: 1134995, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332719

RESUMEN

Arbuscular mycorrhizal fungi (AMF) play a key role in terrestrial ecosystems, while the ecological restoration application of AMF in mining areas has been progressively gaining attention. This study simulated a low nitrogen (N) environment in copper tailings mining soil to explore inoculative effects of four AMF species on the eco-physiological characteristics of Imperata cylindrica, and provided plant-microbial symbiote with excellent resistance to copper tailings. Results show that N, soil type, AMF species, and associated interactions significantly affected ammonium (NH4 +), nitrate nitrogen (NO3 -), and total nitrogen (TN) content and photosynthetic characteristics of I. cylindrica. Additionally, interactions between soil type and AMF species significantly affected the biomass, plant height, and tiller number of I. cylindrica. Rhizophagus irregularis and Glomus claroideun significantly increased TN and NH4 + content in the belowground components I. cylindrica in non-mineralized sand. Moreover, the inoculation of these two fungi species significantly increased belowground NH4 + content in mineralized sand. The net photosynthetic rate positively correlated to aboveground total carbon (TC) and TN content under the high N and non-mineralized sand treatment. Moreover, Glomus claroideun and Glomus etunicatum inoculation significantly increased both net photosynthetic and water utilization rates, while F. mosseae inoculation significantly increased the transpiration rate under the low N treatment. Additionally, aboveground total sulfur (TS) content positively correlated to the intercellular carbon dioxide (CO2) concentration, stomatal conductance, and the transpiration rate under the low N sand treatment. Furthermore, G. claroideun, G. etunicatum, and F. mosseae inoculation significantly increased aboveground NH4 + and belowground TC content of I. cylindrica, while G. etunicatum significantly increased belowground NH4 + content. Average membership function values of all physiological and ecological I. cylindrica indexes infected with AMF species were higher compared to the control group, while corresponding values of I. cylindrica inoculated with G. claroideun were highest overall. Finally, comprehensive evaluation coefficients were highest under both the low N and high N mineralized sand treatments. This study provides information on microbial resources and plant-microbe symbionts in a copper tailings area, while aiming to improve current nutrient-poor soil conditions and ecological restoration efficiency in copper tailings areas.

8.
Huan Jing Ke Xue ; 44(6): 3376-3385, 2023 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-37309955

RESUMEN

Microbial communities are the key component to maintaining the structure and function of forest soil ecosystems. The vertical distribution of bacterial communities on the soil profile has an important impact on forest soil carbon pools and soil nutrient cycling. Using Illumina MiSeq high-throughput sequencing technology, we analyzed the characteristics of bacterial communities in the humus layer and 0-80 cm soil layer of Larix principis-rupprechtii in Luya Mountain, China, to explore the driving mechanisms affecting the structure of bacterial communities in soil profiles. The results showed that the α diversity of bacterial communities decreased significantly with increasing soil depth, and community structure differed significantly across soil profiles. The relative abundance of Actinobacteria and Proteobacteria decreased with increased soil depth, whereas the relative abundance of Acidobacteria and Chloroflexi increased with the increase in soil depth. The results of RDA analysis showed that soil NH+4, TC, TS, WCS, pH, NO-3, and TP were important factors determining the bacterial community structure of the soil profile, among which soil pH had the most significant effect. Molecular ecological network analysis showed that the complexity of bacterial communities in the litter layer and subsurface soil (10-20 cm) was relatively high, whereas the complexity of bacterial communities in deep soil (40-80 cm) was relatively low. Proteobacteria, Acidobacteria, Chloroflexi, and Actinobacteria played important roles in the structure and stability of soil bacterial communities in Larch. The species function prediction of Tax4Fun showed a gradual decline in microbial metabolic capacity along the soil profile. In conclusion, soil bacterial community structure showed a certain distribution pattern along the vertical profile of soil, the community complexity gradually decreased, and the unique bacterial groups of deep soil and surface soil were significantly different.


Asunto(s)
Actinobacteria , Larix , Microbiota , Bacterias , Bosques , Acidobacteria , Proteobacteria , Suelo
9.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1395-1403, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37236958

RESUMEN

To reveal the assembly mechanisms of soil protozoan community in subalpine forest ecosystems, we analyzed the composition and diversity of protozoan communities and their drivers at the six strata (the litter profile, humus profile, 0-10 cm, 10-20 cm, 20-40 cm and 40-80 cm) of soil profiles in subalpine Larix principis-rupprechtii forest in Luya Mountain using Illumina Miseq high-throughput sequencing technology. The results showed that protozoa in the soil profiles belonged to 335 genera, 206 families, 114 orders, 57 classes, 21 phyla, and 8 kingdoms. There were five dominant phyla (relative abundance >1%) and 10 dominant families (relative abundance >5%). The α diversity decreased significantly with increasing soil depth. Results of PCoA analysis showed that the spatial composition and structure of protozoan community differed significantly across soil depths. The results of RDA analysis showed that soil pH and soil water content were important factors driving protozoan community structure across soil profile. Null model analysis suggested that the heterogeneous selection dominated the processes of protozoan community assemblage. Molecular ecological network analysis revealed that the complexity of soil proto-zoan communities decreased continuously with increasing depth. These results elucidate the assembly mechanism of soil microbial community in subalpine forest ecosystem.


Asunto(s)
Larix , Microbiota , Humanos , Suelo , Bosques , China , Microbiología del Suelo
10.
Huan Jing Ke Xue ; 44(5): 2918-2927, 2023 May 08.
Artículo en Chino | MEDLINE | ID: mdl-37177963

RESUMEN

Although soil microbes play a key role in grassland ecosystem functioning, the response of their diversity to grassland degradation has not been fully investigated. Here, we used shotgun metagenomic sequencing to analyze the characteristics and influencing factors of soil microbial taxonomic and functional diversity at four different degradation stages[i.e., non-degraded (ND), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD)]of subalpine meadow in the Mount Wutai. The results showed that there were significant differences in the relative abundances of Actinobacteria, Bacteroidetes, Nitrospirae, and Parcubacteria among the four subalpine grasslands with different degradation degrees (P<0.05).Compared with that in ND, the degraded meadows increased the proportion of genes related to carbon metabolism, biosynthesis of amino acids, pyruvate metabolism, citric acid cycle, propanoate metabolism, butanoate metabolism, and fatty acid metabolism (P<0.05), indicating that the degradation of subalpine grassland changed the metabolic potential of energy metabolism and the nutrient cycle of the soil microbial community. Grassland degradation changed soil microbial taxonomic and functional α diversity, especially in MD and HD.Grassland degradation resulted in significant changes in the taxonomic and functional compositions of the microbial communities. The total nitrogen, pH, and soil organic carbon significantly affected the taxonomic and functional compositions of the microbial communities.The ß diversity of the plant community was significantly correlated with the taxonomic and functional ß diversity of the microbial community (P<0.05), indicating strong coupling. The results of this study revealed the changes and driving mechanisms of subsurface microbial taxonomic and functional diversity during grassland degradation, which can provide a theoretical basis for subalpine meadow protection and ecological restoration.


Asunto(s)
Ecosistema , Microbiota , Pradera , Carbono , Suelo , Microbiología del Suelo , Bacterias/genética
11.
Microbiol Spectr ; 11(1): e0505122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36688664

RESUMEN

Root-associated microbiomes are essential for the ecological function of the root system. However, their assembly mechanisms in wetland are poorly understood. In this study, we explored and compared the ecological processes of bacterial and fungal communities in water, bulk soil, rhizosphere soil, and root endosphere niches for 3 developmental stages of Typha orientalis at different wetland sites, and assessed the potential functions of root endosphere microbiomes with function prediction. Our findings suggest that the microbial diversity, composition, and interaction networks along the water-soil-plant continuum are shaped predominantly by compartment niche and developmental stage, rather than by wetland site. Source tracking analysis indicated that T. orientalis' root endosphere is derived primarily from the rhizosphere soil (bacteria 39.9%, fungi 27.3%) and water (bacteria 18.9%, fungi 19.1%) niches. In addition, we found that the assembly of bacterial communities is driven primarily by deterministic processes and fungal communities by stochastic processes. The interaction network among microbes varies at different developmental stages of T. orientalis, and is accompanied by changes in microbial keystone taxa. The functional prediction data supports the distribution pattern of the bacterial and fungal microbiomes, which have different ecological roles at different plant developmental stages, where more beneficial bacterial taxa are observed in the root endosphere in the early stages, but more saprophytic fungi in the late stages. Our findings provide empirical evidence for the assembly, sources, interactions, and potential functions of wetland plant root microbial communities and have significant implications for the future applications of plant microbiomes in the wetland ecosystem. IMPORTANCE Our findings provide empirical evidence for the assembly, sources, interactions, and potential functions of wetland plant root microbial communities, and have significant implications for the future applications of plant microbiomes in the wetland ecosystem.


Asunto(s)
Microbiota , Micobioma , Typhaceae , Humedales , Microbiología del Suelo , Raíces de Plantas/microbiología , Bacterias/genética , Hongos , Plantas , Desarrollo de la Planta , Suelo
12.
Huan Jing Ke Xue ; 44(1): 252-261, 2023 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-36635813

RESUMEN

Planktonic and epiphytic bacterial communities play an important role in wetland nitrogen pollutant removal and water purification, yet their community dynamics are far from understood compared with those of the wetland soil bacterial community. Taking the planktonic bacterial community in the Yuguqiao constructed wetland and the epiphytic bacterial community on the leaf surface of the common submerged plant Vallisneria natans as the research objects, the composition, structure, and functional diversity of planktonic and epiphytic bacterial communities were analyzed using high-throughput sequencing. The results showed that the compositions of the planktonic and epiphytic bacterial communities were significantly different, with more heterotrophic and denitrifying bacteria present in the epiphytic bacterial community than in the planktonic bacterial community. The α diversity of the planktonic bacterial community was significantly different among the three sampling sites but not in the epiphytic bacterial community. In general, the OTU index and Shannon index of the epiphytic bacterial community were significantly higher than those of the planktonic bacterial community, and they had obvious spatial heterogeneity. RDA analysis showed that DO, IC, TP, NH+4, and TOC had important effects on the structural changes of both planktonic and epiphytic bacterial communities but had a greater impact on planktonic bacterial communities. Co-occurrence network analysis showed that the epiphytic bacterial community had more niche differentiation, a more stable network, and stronger resistance to external disturbance. The results of FAPROTAX functional prediction analysis showed that the nitrogen cycling, especially denitrification of the epiphytic bacterial community, was significantly greater than that of the planktonic bacterial community. The results of this study revealed the driving mechanism for maintaining the diversity of planktonic and epiphytic bacterial communities, which can provide a scientific basis for excavating and utilizing planktonic and epiphytic bacterial community resources in the construction of constructed wetlands to improve the efficiency of water purification.


Asunto(s)
Hydrocharitaceae , Plancton , Humedales , Plantas , Bacterias/genética , Nitrógeno
13.
Front Pharmacol ; 13: 925349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784718

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, whose etiology is poorly understood. Accumulating evidence indicates that gut microbiota plays an important role in the occurrence and progression of various human diseases, including NAFLD. In this study, NAFLD mouse models were established by feeding a high-fat diet (HFD). Baicalein, a natural flavonoid with multiple biological activities, was administered by gavage, and its protective effect on NAFLD was analyzed by histopathological and blood factor analysis. Gut microbiota analysis demonstrated that baicalein could remodel the overall structure of the gut microbiota from NAFLD model mice, especially Anaerotruncus, Lachnoclostridium, and Mucispirillum. Transcriptomic analysis showed baicalein restored the expressions of numerous genes that were upregulated in hepatocytes of NAFLD mice, such as Apoa4, Pla2g12a, Elovl7, Slc27a4, Hilpda, Fabp4, Vldlr, Gpld1, and Apom. Metabolomics analysis proved that baicalein mainly regulated the processes associated with lipid metabolism, such as alpha-Linolenic acid, 2-Oxocarboxylic acid, Pantothenate and CoA biosynthesis, and bile secretion. Multi-omics analysis revealed that numerous genes regulated by baicalein were significantly correlated with pathways related to lipid metabolism and biosynthesis and secrection of bile acid, and baicalein might affect lipid metabolism in liver via regulating the ecological structure of gut microbiota in NAFLD mice. Our results elucidated the correlated network among diet, gut microbiota, metabolomic, and transcriptional profiling in the liver. This knowledge may help explore novel therapeutic approaches against NAFLD.

14.
Huan Jing Ke Xue ; 43(6): 3328-3337, 2022 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-35686803

RESUMEN

Grassland degradation has become a worldwide ecological problem. Although soil microorganisms, as the main participants in the process of grassland degradation, play a key role in maintaining ecosystem function and improving soil productivity, little is known about the changes in microbial communities caused by grassland degradation and their relationship with soil properties and plant communities. In this study, we used Illumina MiSeq sequencing to analyze the soil fungal communities of subalpine meadow soil at four different degradation stages[i.e., non-degraded (ND), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD)] on Mount Wutai. The results showed that Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla of soil fungi in the subalpine meadow, regardless of degradation stage. LEfSe showed that the subalpine meadows with different degradation degrees were enriched with different biomarkers. Compared with ND, MD and HD were enriched with more pathogenic fungi. Moreover, HD apparently decreased the richness and Shannon indexes of soil fungal communities compared with those of ND. Non-metric multidimensional scaling (NMDS) and similarity analysis (ANOSIM) indicated that the compositions and structures of fungal communities were significantly different among meadows with different degradation degrees (P<0.05). Redundancy analysis (RDA) showed that soil water content, total nitrogen, plant richness, and ammonium nitrogen were significantly correlated with the compositions and structures of fungal communities (P<0.05). There were significant correlations between α diversity and ß diversity between plant and fungal communities (P<0.05), indicating strong coupling. The results of our study provide a theoretical basis for further research on the changes in soil fungal communities and their driving mechanism in different degradation stages of subalpine meadows.


Asunto(s)
Microbiota , Micobioma , Hongos/genética , Pradera , Humanos , Nitrógeno , Plantas , Suelo/química , Microbiología del Suelo
15.
Front Microbiol ; 13: 857046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356511

RESUMEN

The use of antimicrobials in intensive poultry production is becoming increasingly common because of its high throughput of meat and egg products. However, the profile of antibiotic resistance genes (ARGs) and the underlying mechanisms in different breeding scale farms were not fully explored. The study examined the profiles of ARGs in layer manure from three free-range and 12 intensive layer farms with different scales (N500, N5000, N10000, and N20000). A quantitative PCR (qPCR) array was used to quantify ARGs, and microbial community structure was analyzed by 16S rRNA gene sequencing. A total of 48 ARGs, belonging to seven major types, were identified in the layer manure samples, with sul2, tetM-01, and ermB being the predominant ones. The abundance, diversity, and mobility potential of ARGs in layer manure changed significantly with the increasing of the breeding scale. The abundances of total ARGs had significantly positive correlations with mobile genetic elements (MGEs), suggesting the mobility potential of ARGs in layer manure samples. Bacterial abundance did not show significant differences among the five group manure samples. However, bacterial diversity showed an increasing trend along the breeding scale. Pathogenic Bacteroidetes increased in the largest-scale layer manure samples and showed significant positive correlations with most ARGs. Network analysis revealed significant co-occurrence patterns between ARGs and microbial taxa, indicating ARGs had a wide range of bacterial hosts. Proteobacteria and Firmicutes were potential hosts for tetracycline and macrolide-lincosamide-streptogramin B (MLSB) resistant genes. Our results indicated that the expansion of the breeding scale of a farm promotes the abundance, diversity, and mobility potential of ARGs in layer manure.

16.
Environ Pollut ; 298: 118823, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007680

RESUMEN

Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the major channel for their decontamination from different environments. Aerobic and anaerobic biodegradations of PAHs in batch reactors with single or multiple bacterial strains have been intensively studied, but the cooperative mechanism of functional PAH-degrading populations at the community level under field conditions remains to be explored. We determined the composition of PAH-degrading populations in the bacterial community and PAHs in farmland and wasteland soils contaminated by coking plants using high-throughput sequencing and high-performance liquid chromatography (HPLC), respectively. The results indicated that the PAH content of farmland was significantly lower than that of wasteland, which was attributed to the lower content of low molecular weight (LMW) PAHs and benzo [k]fluoranthene. The soil physicochemical properties were significantly different between farmland and wasteland. The naphthalene content was related to the soil organic carbon (SOC) and pH, while phenanthrene was related to the nitrate nitrogen (NO3--N) and water content (WC). The pH, nitrite (NO2--N), SOC, NO3--N and WC were correlated with the content of high molecular weight (HMW) PAHs and total PAHs. The relative abundances of the phyla Actinobacteria, Chloroflexi, Acidobacteria, and Firmicutes and the genera Nocardioides, Bacillus, Lysobacter, Mycobacterium, Streptomyces, and Steroidobacter in farmland soil were higher than those in wasteland soil. The soil physicochemical characteristics of farmland increased the diversities of the PAH degrader and total bacterial communities, which were significantly negatively related to the total PAHs and LMW PAHs. Subsequently, the connectivity and complexity of the network in farmland were lower than those in wasteland, while the module containing a module hub capable of degrading PAHs was identified in the network of farmland soil. Structural equation modelling (SEM) analysis showed that the soil characteristics and optimized abundance and diversity of the bacterial community in farmland were beneficial for the dissipation efficiency of PAHs.


Asunto(s)
Coque , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Carbono , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
17.
Sci Total Environ ; 815: 152908, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34999068

RESUMEN

Litter decomposition is a critical component of the ecological nutritional transformation process. In a copper mining area, the litter from Imperata cylindrica is the major indicator for restoring heavy metal-polluted copper mining lands. Large amounts of litter are generated at the end of the plant growing season during the process of vegetation restoration in copper mining areas, and the microbial dynamics play an important role in soil nutrient turnover during the decomposition of litter. Investigating the characteristics and interactions of bacterial communities during litter decomposition will clarify the driving mechanisms of organic matter and nutrient cycling in copper mining areas that harbor contaminated soils. Here, we report the results of an in situ decomposition experiment that lasted for a total of 460 days from three of the 16 copper mining subdams with heavy metal pollution and different phytoremediation histories (e.g., 50, 22 and 5 years) to explore the bacterial communities as the driving factors of litter decomposition. The total carbon contents of the litter decreased by 62.6% and 71.5% in the decomposition process at those sites with phytoremediation histories of 50 and 22 years (S516 and S536), respectively, but decreased by only 25.8% at the site with a phytoremediation history of 5 years (S560). The optimal C/N ratios in the three different restoration stages varied and were 65.5, 86.7 and 39.3 in S516, S536, S560, respectively. Litter decomposition enriched the heavy metal contents such as cadmium, copper (Cu), lead and zinc (P < 0.05) in litter. Proteobacteria and Actinobacteriota were the dominant bacterial phyla during the different litter decomposition stages, which accounted for 91.66% of the relative abundances in the bacterial communities. Moreover, the role of Friedmanniella, which had the highest betweenness centrality (BC) value, was critical in sustaining both the structure and function of the bacterial communities during the early decomposition stage. However, Quadrisphaera, with the maximum BC value (1074.8), became the dominant genus as litter decomposition progressed. The most crucial factors that affected the litter bacterial communities were the litter pH and copper contents. The obtained results will be helpful to provide a further understanding of litter decomposition mechanisms and will provide a scientific basis for improving the effectiveness of material circulation and nutrient transformation in degraded copper mining ecosystems.


Asunto(s)
Cobre , Microbiología del Suelo , Biodegradación Ambiental , China , Ecosistema , Poaceae , Suelo
18.
Front Microbiol ; 12: 780015, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880848

RESUMEN

Microorganisms drive litter decomposition while maintaining the chemical cycle of ecosystems. We used the dominant vegetation (Imperata cylindrica) in the mining area selected for this study for this experiment to explore fungal community characteristics, key fungal groups, and their associative driving factors during I. cylindrica litter decomposition. Maximum litter C/N values occurred 100days after the commencement of the decomposition experiment during all different recovery years in this copper tailings area. Heavy metals in litter [copper (Cu), zinc (Zn), plumbum (Pb), and cadmium (Cd)] accumulated gradually with decomposition. The dominant fungal phyla observed in the community were Ascomycota and Basidiomycota, while the classes Sordariomycetes and Eurotiomycetes significantly increased as litter decomposition progressed. Degrees of connectivity and interaction between fungal communities were highest during the early litter decomposition stage. Sordariomycetes, Dothideomycetes, and Leotiomycetes all played critical roles in maintaining fungal community relationships. The effect of physicochemical properties and enzyme activities in I. cylindrica litter was significant on the dominant fungi, while driving factors that affected fungal communities differed over different recovery stages. Total nitrogen (TN), heavy metals, pH, and enzyme activities in the little were significantly correlated with fungal community composition. Litter properties throughout the litter decomposition process mainly affected the dynamics of the fungal community structure. The main environmental factors that affected fungal community structure were copper content and pH. Dichotomopilus, Trichoderma, Knufia, Phialophora, Oxyporus, and Monocillium, which all played important roles in litter decomposition, positively correlated with heavy metals, sucrase, and catalase. Finally, results from this study will help us better clarify litter decomposition mechanisms in degraded ecosystems as well as provide a scientific basis for improving species cycling and nutrient transformation efficiency in mining ecosystems.

19.
Microorganisms ; 9(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34835372

RESUMEN

In nature, protists directly participate in litter decomposition and indirectly affect litter decomposition processes by means of their influence on litter microbial communities. To date, relevant studies on litter microbial communities have primarily focused on bacteria and fungi, while relatively little attention has been paid to the characteristics of protozoan communities within damaged ecosystems. Two dominant grass species (Bothriochloa ischaemum and Imperata cylindrica) were selected from China's "Eighteenth" River tailings dam to explore protozoan community composition and diversity in a degraded mining area and to clarify the influence among key ecological factors and protozoan community characteristics in litter. High-throughput sequencing was used to analyze protozoan community composition and diversity, while correlation analysis was used to explore the relationships between protozoan communities and litter nutrient characteristics, including associative enzyme degradation. Although protozoan communities in litter shared a dominant group at an order level (Colpodida), they differed at a genus level (i.e., Hausmanniella and Tychosporium). Moreover, although the order Cryomonadida positively correlated to total nitrogen (TN) and sucrose, it exhibited an extreme negative correlation to total carbon (TC) and cellulase. Colpodida and Oomycota_X significantly and negatively correlated to litter urease activity. Nutrient characteristics of grass litter in copper tailing dams are important ecological factors that affect protozoan community characteristics. Notable differences were observed among protozoan communities of these two grass species, while litter enzyme activities were closely correlated to protozoan community diversity. The results suggested that Colpodida may play important roles in litter decomposition and nutrient cycling in mining areas.

20.
Front Microbiol ; 12: 669131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276600

RESUMEN

Bacterial communities have been described as early indicators of both regional and global climatic change and play a critical role in the global biogeochemical cycle. Exploring the mechanisms that determine the diversity patterns of bacterial communities and how they share different habitats along environmental gradients are, therefore, a central theme in microbial ecology research. We characterized the diversity patterns of bacterial communities in Pipahai Lake (PPH), Mayinghai Lake (MYH), and Gonghai Lake (GH), three subalpine natural lakes in Ningwu County, Shanxi, China, and analyzed the distribution of their shared and unique taxa (indicator species). Results showed that the species composition and structure of bacterial communities were significantly different among the three lakes. Both the structure of the entire bacterial community and the unique taxa were significantly influenced by the carbon content (TOC and IC) and space distance; however, the structure of the shared taxa was affected by conductivity (EC), pH, and salinity. The structure of the entire bacterial community and unique taxa were mainly affected by the same factors, suggesting that unique taxa may be important in maintaining the spatial distribution diversity of bacterial communities in subalpine natural freshwater lakes. Our results provide new insights into the diversity maintenance patterns of the bacterial communities in subalpine lakes, and suggest dispersal limitation on bacterial communities between adjacent lakes, even in a small local area. We revealed the importance of unique taxa in maintaining bacterial community structure, and our results are important in understanding how bacterial communities in subalpine lakes respond to environmental change in local habitats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...