Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 12(2): 183-185, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759377

RESUMEN

Non-cell-autonomous effects on neuronal cells are considered to be involved in the pathogenesis of neurodegenerative diseases but have yet to be mechanistically proven. In this issue of Stem Cell Reports, di Domenico et al. provide direct evidence that α-synuclein transferred from astrocytes exerts non-cell-autonomous neuronal dysfunction on dopaminergic neurons in Parkinson's disease (PD).


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Animales , Neuronas Dopaminérgicas/patología , Humanos , Células Madre/metabolismo , Células Madre/patología
2.
Stem Cell Reports ; 11(5): 1171-1184, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30344006

RESUMEN

Parkinson disease (PD) is a progressive neurological disease caused by selective degeneration of dopaminergic (DA) neurons in the substantia nigra. Although most cases of PD are sporadic cases, familial PD provides a versatile research model for basic mechanistic insights into the pathogenesis of PD. In this study, we generated DA neurons from PARK2 patient-specific, isogenic PARK2 null and PARK6 patient-specific induced pluripotent stem cells and found that these neurons exhibited more apoptosis and greater susceptibility to rotenone-induced mitochondrial stress. From phenotypic screening with an FDA-approved drug library, one voltage-gated calcium channel antagonist, benidipine, was found to suppress rotenone-induced apoptosis. Furthermore, we demonstrated the dysregulation of calcium homeostasis and increased susceptibility to rotenone-induced stress in PD, which is prevented by T-type calcium channel knockdown or antagonists. These findings suggest that calcium homeostasis in DA neurons might be a useful target for developing new drugs for PD patients.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Neuronas Dopaminérgicas/patología , Mitocondrias/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Neuronas Dopaminérgicas/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Proyección Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas/metabolismo , Rotenona/toxicidad , Ubiquitina-Proteína Ligasas/metabolismo
3.
Genes Dev ; 32(2): 165-180, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29440260

RESUMEN

Multiple congenital disorders often present complex phenotypes, but how the mutation of individual genetic factors can lead to multiple defects remains poorly understood. In the present study, we used human neuroepithelial (NE) cells and CHARGE patient-derived cells as an in vitro model system to identify the function of chromodomain helicase DNA-binding 7 (CHD7) in NE-neural crest bifurcation, thus revealing an etiological link between the central nervous system (CNS) and craniofacial anomalies observed in CHARGE syndrome. We found that CHD7 is required for epigenetic activation of superenhancers and CNS-specific enhancers, which support the maintenance of the NE and CNS lineage identities. Furthermore, we found that BRN2 and SOX21 are downstream effectors of CHD7, which shapes cellular identities by enhancing a CNS-specific cellular program and indirectly repressing non-CNS-specific cellular programs. Based on our results, CHD7, through its interactions with superenhancer elements, acts as a regulatory hub in the orchestration of the spatiotemporal dynamics of transcription factors to regulate NE and CNS lineage identities.


Asunto(s)
ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Epigénesis Genética , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/metabolismo , Síndrome CHARGE/genética , Línea Celular , Linaje de la Célula/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Haploinsuficiencia , Humanos , Cresta Neural/metabolismo , Transcripción Genética
4.
Cell Rep ; 20(12): 2992-3003, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930691

RESUMEN

Regulation of the epigenome during in vivo specification of brain stem cells is still poorly understood. Here, we report DNA methylome analyses of directly sampled cortical neural stem and progenitor cells (NS/PCs) at different development stages, as well as those of terminally differentiated cortical neurons, astrocytes, and oligodendrocytes. We found that sequential specification of cortical NS/PCs is regulated by two successive waves of demethylation at early and late development stages, which are responsible for the establishment of neuron- and glia-specific low-methylated regions (LMRs), respectively. The regulatory role of demethylation of the gliogenic genes was substantiated by the enrichment of nuclear factor I (NFI)-binding sites. We provide evidence that de novo DNA methylation of neuron-specific LMRs establishes glia-specific epigenotypes, essentially by silencing neuronal genes. Our data highlight the in vivo implications of DNA methylation dynamics in shaping epigenomic features that confer the differentiation potential of NS/PCs sequentially during development.


Asunto(s)
Linaje de la Célula/genética , Metilación de ADN/genética , Epigenómica , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Desmetilación del ADN , Regulación de la Expresión Génica , Ratones Transgénicos , Factores de Transcripción NFI/química , Factores de Transcripción NFI/metabolismo , Neuroglía/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...