Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124460, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38761477

RESUMEN

As one innate immune pattern recognition receptor, Toll-like receptor 4 (TLR4) recently has been considered as a critical player in glucolipid metabolism. Blueberries contain high level of anthocyanins, especially malvidin-3-glucoside (Mv-3-glc), which contribute the anti-inflammatory, hypoglycemic, and hypolipidemic effects. It is speculated that Mv-3-glc is able to possess these functions by binding to TLR4. Here, the noncovalent interactions of Mv-3-glc and TLR4 was explored through multi-techniques including fluorescence and ultraviolet-visible (UV-Vis) absorption spectroscopy, as well as molecular docking. The results demonstrated that Mv-3-glc was able to quench TLR4 intrinsic fluorescence effectively. A stable complex was formed spontaneously and the reaction was exothermic. The degree of binding of Mv-3-glc to TLR4 showed a strong dependence on the chemical concentration, temperature, and pH values. The negative signs for enthalpy (ΔH = -69.1 ± 10.8 kJ/mol) and entropy (ΔS = -105.0 ± 12.3 J/mol/K) from the interaction of the Mv-3-glc and TLR4 shows that the major driving forces are the hydrogen bonding and van der Waals' force, which is consistent with the molecular docking results. In addition, molecular docking predicted that the active center with specific amino acid residues, Phe126, Ser127, Leu54, Ile153, and Tyr131 was responsible for the site of Mv-3-glc binding to TLR4/myeloid differentiation protein-2 (MD-2). These findings confirmed that Mv-3-glc could bind to TLR4, which would be beneficial to understand the target therapeutic effects of blueberry anthocyanins on TLR4 in regulating glucolipid metabolism.


Asunto(s)
Antocianinas , Glucósidos , Simulación del Acoplamiento Molecular , Espectrometría de Fluorescencia , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/química , Glucósidos/química , Glucósidos/metabolismo , Antocianinas/química , Antocianinas/metabolismo , Antocianinas/farmacología , Humanos , Unión Proteica , Espectrofotometría Ultravioleta , Termodinámica , Enlace de Hidrógeno , Sitios de Unión
2.
Org Lett ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821041

RESUMEN

The present Letter demonstrates a photoswitched stereodivergent synthesis of allylic sulfones from sodium sulfinates, triphenylvinylphosphonium chloride, and (hetero)aromatic aldehydes in a single step. Mechanistically, cis-allylic sulfones, generated from the unstabilized ylide intermediates and aldehydes in situ, could be finally converted to trans-allylic sulfones via photochemical isomerization in the presence of a catalytic amount of bis(2-thienyl) ketone.

3.
Gut Microbes ; 16(1): 2341457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630030

RESUMEN

With an increasing interest in dietary fibers (DFs) to promote intestinal health and the growth of beneficial gut bacteria, there is a continued rise in the incorporation of refined DFs in processed foods. It is still unclear how refined fibers, such as guar gum, affect the gut microbiota activity and pathogenesis of inflammatory bowel disease (IBD). Our study elucidated the effect and underlying mechanisms of guar gum, a fermentable DF (FDF) commonly present in a wide range of processed foods, on colitis development. We report that guar gum containing diet (GuD) increased the susceptibility to colonic inflammation. Specifically, GuD-fed group exhibited severe colitis upon dextran sulfate sodium (DSS) administration, as evidenced by reduced body weight, diarrhea, rectal bleeding, and shortening of colon length compared to cellulose-fed control mice. Elevated levels of pro-inflammatory markers in both serum [serum amyloid A (SAA), lipocalin 2 (Lcn2)] and colon (Lcn2) and extensive disruption of colonic architecture further affirmed that GuD-fed group exhibited more severe colitis than control group upon DSS intervention. Amelioration of colitis in GuD-fed group pre-treated with antibiotics suggest a vital role of intestinal microbiota in GuD-mediated exacerbation of intestinal inflammation. Gut microbiota composition and metabolite analysis in fecal and cecal contents, respectively, revealed that guar gum primarily enriches Actinobacteriota, specifically Bifidobacterium. Guar gum also altered multiple genera belonging to phyla Bacteroidota and Firmicutes. Such shift in gut microbiota composition favored luminal accumulation of intermediary metabolites succinate and lactate in the GuD-fed mice. Colonic IL-18 and tight junction markers were also decreased in the GuD-fed group. Importantly, GuD-fed mice pre-treated with recombinant IL-18 displayed attenuated colitis. Collectively, unfavorable changes in gut microbiota activity leading to luminal accumulation of lactate and succinate, reduced colonic IL-18, and compromised gut barrier function following guar gum feeding contributed to increased colitis susceptibility.


Guar gum increased susceptibility to colitisGuar gum-induced exacerbation of colitis is gut microbiota dependentGuar gum-induced shift in microbiota composition favored the accumulation of luminal intermediate metabolites succinate and lactateGuar gum-fed mice exhibited reduced colonic level of IL-18 and tight junction molecules.Exogenous IL-18 administration partly rescued mice from guar gum-induced colitis susceptibility.


Asunto(s)
Colitis , Galactanos , Microbioma Gastrointestinal , Mananos , Gomas de Plantas , Animales , Ratones , Interleucina-18 , Inflamación , Colitis/inducido químicamente , Fibras de la Dieta , Ácido Láctico , Succinatos
4.
Opt Lett ; 49(8): 2029-2032, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621068

RESUMEN

Physical-layer authentication (PLA) based on hardware fingerprints can safeguard optical networks against large-scale masquerade or active injection attacks. However, traditional schemes rely on massive labeled close-set data. Here, we propose an unsupervised hardware fingerprint authentication based on a variational autoencoder (VAE). Specifically, the triplets are generated through variational inference on unlabeled optical spectra and then applied to train the feature extractor, which has an excellent generalization ability and enables fingerprint feature extraction from previously unknown optical transmitters. The feasibility of the proposed scheme is experimentally verified by the successful classification of eight optical transmitters after a 20 km standard single-mode fiber (SSMF) transmission, to distinguish efficiently the rogue from legal devices. A recognition accuracy of 99% and a miss alarm rate of 0% are achieved even under the interference of multiple rogue devices. Moreover, the proposed scheme is verified to have a comparable performance with the results obtained from supervised learning.

5.
BMC Genomics ; 25(1): 346, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580907

RESUMEN

BACKGROUND: The yak (Bos grunniens) is a large ruminant species that lives in high-altitude regions and exhibits excellent adaptation to the plateau environments. To further understand the genetic characteristics and adaptive mechanisms of yak, we have developed a multi-omics database of yak including genome, transcriptome, proteome, and DNA methylation data. DESCRIPTION: The Yak Genome Database ( http://yakgenomics.com/ ) integrates the research results of genome, transcriptome, proteome, and DNA methylation, and provides an integrated platform for researchers to share and exchange omics data. The database contains 26,518 genes, 62 transcriptomes, 144,309 proteome spectra, and 22,478 methylation sites of yak. The genome module provides access to yak genome sequences, gene annotations and variant information. The transcriptome module offers transcriptome data from various tissues of yak and cattle strains at different developmental stages. The proteome module presents protein profiles from diverse yak organs. Additionally, the DNA methylation module shows the DNA methylation information at each base of the whole genome. Functions of data downloading and browsing, functional gene exploration, and experimental practice were available for the database. CONCLUSION: This comprehensive database provides a valuable resource for further investigations on development, molecular mechanisms underlying high-altitude adaptation, and molecular breeding of yak.


Asunto(s)
Multiómica , Proteoma , Animales , Bovinos/genética , Proteoma/genética , Genoma , Transcriptoma , Anotación de Secuencia Molecular
6.
Dalton Trans ; 53(17): 7406-7413, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38587851

RESUMEN

Separation of lanthanide (Ln) and minor actinide (MA) elements and mutual separation between minor actinide elements (e.g. Am(III) and Cm(III)) represent a crucial undertaking. However, separating these elements poses a significant challenge owing to their highly similar physicochemical properties. Asymmetric N-heterocyclic ligands such as N-ethyl-6-(1H-pyrazol-3-yl)-N-(p-tolyl)picolinamide (Et-p-Tol-A-PzPy) and N-ethyl-N-(p-tolyl)-1,10-phenanthroline-2-carboxamide (ETPhenAm) have recently received considerable attention in the separation of MAs over Ln from acid solutions. By changing the central skeleton structures of these ligands and introducing substituents with different properties on the side chains, their complexation behavior with Am(III), Cm(III), and Eu(III) may be affected. In this work, we explore four different asymmetric N-containing heterocyclic ligands, namely Et-p-Tol-A-PzPy (L1), N-ethyl-6'-(1H-pyrazol-3-yl)-N-(p-tolyl)-[2,2'-bipyridine]-6-carboxamide (L2), N-ethyl-9-(1H-pyrazol-3-yl)-N-(p-tolyl)-1,10-phenanthroline-2-carboxamide (L3), and ETPhenAm (L4) using density functional theory (DFT). The calculated results demonstrate the potential of ligands L1-L4 for the extraction and separation of Am(III), Cm(III), and Eu(III). Ligand analysis shows that ligand L3 binds more easily to the central metal atom, in line with the stronger extraction capacity of L3. In spite of the higher covalence between the side chain and the central metal atom for complexes with L1-L3, the main chain seems to control the stability of the extraction complexes. The preorganized 1,10-phenanthroline backbone also further enhances the extraction performance of L3 and L4. The difference in coordination ability between the side chain donors of these ligands and metal ions may affect their separation efficiency. This work presents theoretical insights into synthesizing novel ligands for separating trivalent actinides by adjusting N-heterocyclic ligands.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38427540

RESUMEN

The rapid, accurate, and robust computation of virtual human figures' "in-between" pose transitions from available and sometimes sparse inputs is of fundamental significance to 3D interactive graphics and computer animation. Various methods have been proposed to produce natural lifelike transitions of human pose automatically in recent decades. Nevertheless, conventional pure model-driven methods require heuristic knowledge (e.g., least motion guided by physics laws) and ad-hoc clues (e.g., splines with non-uniform time warp) that are difficult to obtain, learn, and infer. With the fast emergence of large-scale datasets readily available to animators in the most recent years, deep models afford a powerful alternative to tackle the aforementioned challenges. However, pure data-driven methods still suffer from the remaining challenges such as unseen data in practice and less generative power in model/domain/data transfer, and the measurement of the generative power has always been omitted in these works. In essence, data-driven methods solely rely on the qualities and quantities of training datasets. In this paper, we propose a hybrid approach built upon the seamless integration of data-driven and model-driven methods, called Dynamic Motion Transition (DMT), with the following salient modeling advantages: (1) The data augmentation capability based on the limited human locomotion data capture and the concept of force-derived directly from physical laws; (2) Force learning by which skeleton joints are driven to move, and the Conditional Temporal Transformer (CTT) being trained to learn the force change in the local range, both at the fine level; and (3) At the coarse level, the effective and flexible creation of the subsequent step motion using Dynamic Movement Primitives (DMP) until the target is reached. Our extensive experiments have confirmed that our model can outperform the state-of-the-art methods under the newly devised metric by virtue of the least action loss function. In addition, our novel method and system are of immediate benefit to many other animation tasks such as motion synthesis and control, and motion tracking and prediction in this bigdata graphics era.

8.
J Am Chem Soc ; 146(10): 7088-7096, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38436238

RESUMEN

Dilanthanide complexes with one-electron delocalization are important targets for understanding the specific 4f/5d-bonding feature in lanthanide chemistry. Here, we report an isolable azide-bridged dicerium complex 3 [{(TrapenTMS)Ce}2(µ-N3)]• [Trapen = tris (2-aminobenzyl)amine; TMS = SiMe3], which is synthesized by the reaction of tripodal ligand-supported (TrapenTMS)CeIVCl complex 2 with NaN3. The structure and bonding nature of 3 are fully characterized by X-ray crystal diffraction analysis, electron paramagnetic resonance (EPR), magnetic measurement, cyclic voltammetry, X-ray absorption spectroscopy, and quantum-theoretical studies. Complex 3 presents a trans-bent central Ce-N3-Ce unit with a single electron of two mixed-valent Ce atoms. The unique low-temperature (2 K) anisotropic EPR signals [g = 1.135, 2.003, and 3.034] of 3 indicate that its spin density is distributed on the central Ce-N3-Ce unit with marked electron delocalization. Quantum chemical analyses show strong 4f/5d orbital mixing in the singly occupied molecular orbital of 3, which allows for the unpaired electron to extend throughout the cerium-azide-cerium unit via a multicentered one-electron (Ce-N3-Ce) interaction. This work extends the family of mixed-valent dilanthanide complexes and provides a paradigm for understanding the bonding motif of ligand-bridged dilanthanide complexes.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 123839, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38417235

RESUMEN

An innovative salamo-like fluorescent chemical sensor H2L, has been prepared that can be utilized to selectively detect Cu2+ and B4O72- ions. Cu2+ ions can bind to oxime state nitrogen and phenol state oxygen atoms in the chemosensor H2L, triggering the LMCT effect leading to fluorescence enhancement. The crystal structure of the copper(II) complex, named as [Cu(L)], has been achieved via X-ray crystallography, and the sensing mechanism has been confirmed by further theoretical calculations with DFT. Besides, the sensor H2L recognizes B4O72- ions causing an ICT effect resulting in bright blue fluorescence. Moreover, the sensor has relatively high selectivity and sensitivity for Cu2+ and B4O72- ions, and the detection limits are 1.02 × 10-7 and 2.06 × 10-7 M, respectively. In addition, the good biocompatibility and excellent water solubility of the sensor H2L make it very advantageous in practical applications, using H2L powder for fingerprint visualization, using H2L to identify the phenomenon of B4O72- ions emitting bright blue fluorescence, making it an ink that can print encrypted messages on A4 paper, in addition to this, based on H2L, the real water sample was tested for Cu2+ ion recognition, and finally the test strip experiment was carried out.

10.
Bioorg Chem ; 144: 107131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38271824

RESUMEN

Ginsenoside 20 (R)-25-methoxy-dammarane-3 ß, twelve ß, 20 triol (AD-1) is a promising new drug for the treatment of prostate cancer, but its bioavailability is low. This study investigated the effects of the main metabolites PD and M6 of AD-1 on prostate cancer cell PC3. The in vitro experimental results showed that the IC50 values of PC3 cells treated with PD and M6 were 65.61 and 11.72, respectively. Both PD and M6 inhibited the migration of PC3 cells, and the cell cycle was blocked in the G1 phase. The apoptosis rates of cells following M6 treatment at concentrations of 7.5, 15, and 30 µM were 13.4 %, 17.5 %, and 41.4 %, respectively, which stimulated the expression of apoptosis protein and significantly increased intracellular ROS levels. In xenograft models, PD and M6 have been reported to significantly inhibit tumor growth. We used a genome-wide mRNA expression profile to study the effects of PD and M6 on gene expression in PC3 cancer cells. PD and M6 induced downregulation of HSP70 subtypes HSPA1A and HSPA1B. RT-PCR confirmed that the significant down-regulation of HSP70 subtype expressions was consistent with the results of Transcriptome analysis. Moreover, M6 significantly downregulated the expression of AR, which was further proved by Western blot analysis. In summary, our research findings provide a scientific basis for interpreting the significant activity of AD-1 in prostate cancer, and for the research and development of PD and M6 as novel HSP70 inhibitors.


Asunto(s)
Ginsenósidos , Neoplasias de la Próstata , Masculino , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Proliferación Celular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Ciclo Celular , Apoptosis , Línea Celular Tumoral
11.
J Med Food ; 27(1): 22-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236693

RESUMEN

Astragali Radix (AR) or its extract has been used as an herbal medicine and dietary supplement in China, Europe, and the United States. The gut microbiota could provide new insights for exploring dietary supplements' underlying mechanism on organisms. However, no reports have focused on the regulatory effect of AR on the gut microbiota as a dietary supplement. In this study, healthy ICR mice of either sex were divided into AR and control (CON) groups and given AR water extract (4.55 mg/kg·day-1) or saline by gavage for 14 days, respectively. Then 16S rRNA gene sequencing and ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry-based fecal metabolomics were integrated to investigate the benefits of dietary AR. Weighted gene coexpression network analysis was also introduced to investigate the metabolites with highly synergistic changes. AR supplementation influenced the structure of intestinal microflora, especially enriching short-chain fatty acid-producing bacteria g_Coprobacillus, g_Prevotella, and g_Parabacteroides. AR also significantly altered the fecal metabolome, mainly related to amino acid metabolism, nucleotide metabolism, and bile acid (BA) metabolism. Moreover, the increased secondary BAs and BA-sulfates might closely relate to intestinal microflora. These findings provide valuable insights for future research of dietary AR as a functional food.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , ARN Ribosómico 16S/genética , Ratones Endogámicos ICR , Metabolómica/métodos , Metaboloma
12.
Food Res Int ; 176: 113811, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163716

RESUMEN

Blueberries contain an important amount of anthocyanins, which possess numerous biological properties. Nonetheless, the potential applications of anthocyanins may be constrained due to their limited stability and bioavailability. This study aimed to evaluate the stability and absorption of blueberry anthocyanin extracts (BAE) and anthocyanin standards (malvidin and cyanidin glycosides) when encapsulated using ferritin (FR) nanocarriers or a combination of FR and sodium alginate (SA) under simulated gastrointestinal conditions and Caco-2 cell monolayers. These results indicate that the use of FR nanocarriers resulted in an extended-release of anthocyanins during simulated digestion. Particularly, it was observed that after a period of 2 h in the intestinal phase, the anthocyanin concentration in BAE was greater (38.01 µg/mL, P < 0.05) when FR nanocarriers were employed, in comparison to untreated BAE (4.12 µg/mL). Furthermore, outcomes obtained from the Caco-2 cell monolayer assay revealed that FR-anthocyanin encapsulation resulted in substantially higher (P < 0.05) absorption rates ranging from 25.09 to 44.59 % compared to untreated anthocyanins (10.61-22.95 %). These findings provide evidence of an innovative approach for enhancing the stability and bioavailability of blueberry anthocyanins.


Asunto(s)
Antocianinas , Arándanos Azules (Planta) , Humanos , Células CACO-2 , Glicósidos , Antioxidantes
13.
Heliyon ; 9(10): e20621, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37842634

RESUMEN

Objective: Studies have shown that Wuzi Yanzong Pill (WYP) can be used to treat neurological diseases, but its mechanisms for multiple sclerosis (MS) remain unclear. This study aims to determine the effect of WYP on MS in an animal model of experimental autoimmune encephalomyelitis (EAE), and explore its mechanism. To provide theoretical basis for the clinical treatment of MS with WYP. Methods: C57BL/6 female mice were randomly divided into Blank control, EAE control, low dose WYP, medium dose WYP, and high dose WYP groups. One week before model generation, the mice were gavaged with saline (50 mL/kg/d) in Blank control and EAE control groups. The treatment groups was gavaged with different doses of WYP solution (4, 8, or 16 g/kg/d respectively) Clinical scores were recorded daily. Sample collection was conducted on the 14th and 28th days, respectively The expressions of IL-10, IL-17, IL-12, TNF-α and IFN-γ in spleen were detected by ELISA. The expressions of ROCKII, P-MYPT1, TLR4, NF-κB/p65, MCP-1, CCR2 in spleen, brain and spinal cord were detected by Western Blot. The types of macrophages and the contents of intracellular IL-10 and IL-12 were detected by Flow Cytometry. The contents of TNF-α and TLR4 mRNA in the spleen were detected by RT-PCR. Results: WYP treatment improved the clinical score of EAE mice in a significant dose-dependent manner, with the WYP high-dose group showed the most significant improvement in clinical score. Compared with the EAE control group, WYP high dose group had significantly lower levels of IL-17, IFN-γ, ROCKII, P-MYPT1, TLR4, NF-κB/p65, MCP-1, and CCR2 as well as TNF-α and TLR4 mRNA, but increased the number of M2 macrophages and IL-10. Conclusion: WYP treatment relieves clinical symptoms in EAE mice, which may be related to regulate inflammatory pathway and inhibiting expressions of inflammatory cytokines.

14.
Biol Cell ; 115(12): e202300057, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37851997

RESUMEN

BACKGROUND INFORMATION: Persistent myelin debris can inhibit axonal regeneration, thereby hindering remyelination. Effective removal of myelin debris is essential to eliminate the interference of myelin debris in oligodendrocyte progenitor cell (OPC) activation, recruitment to demyelinating sites and/or differentiation into mature oligodendrocytes (OLs). In addition to microglia, it has been reported that astrocytic phagocytosis of myelin debris is a feature of early demyelination. RESULTS: In the present study, astrocytes effectively phagocytized myelin debris in vitro and in vivo. On the 5th day after injecting myelin debris into the brain, astrocytes were enriched in the area injected with myelin debris compared with microglia, and their ability to engulf myelin debris was stronger than that of microglia. When exposed to myelin debris, astrocytes phagocytizing myelin debris triggered self-apoptosis, accompanied by the activation of NF-κB, down-regulation of Nrf2, and the increase of ciliary neurotrophic factor (CNTF) and basic fibroblast growth factor (bFGF). However, the activation of astrocytic NF-κB did not influence the inflammatory cytokines IL-1ß, IL-6, and TNF-α, and the anti-inflammatory factor IL-10. The proliferation of astrocytes and mobilization of OPCs in the subventricular zone were elevated on the 5th day after intracerebral injection of myelin debris. CONCLUSIONS: The results suggested that myelin phagocytosis of astrocytes should help improve the microenvironment and promote myelin regeneration by increasing CNTF and bFGF within the central nervous system. SIGNIFICANCE: However, the molecular interaction of astrocytes acting as phagocytes remains to be further explored. Therefore, an improvement of astrocytes to phagocytize myelin debris may be a promising treatment measure to prevent demyelination and promote remyelination in MS and other diseases with prominent myelin injury.


Asunto(s)
Enfermedades Desmielinizantes , Vaina de Mielina , Humanos , Vaina de Mielina/metabolismo , Astrocitos/metabolismo , Enfermedades Desmielinizantes/metabolismo , Factor Neurotrófico Ciliar/metabolismo , FN-kappa B/metabolismo , Fagocitosis , Oligodendroglía/metabolismo
15.
Exp Ther Med ; 26(5): 534, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37869642

RESUMEN

Acute myocardial infarction is a life-threatening condition with high mortality and complication rates. Although myocardial reperfusion can preserve ischemic myocardial tissue, it frequently exacerbates tissue injury, a phenomenon known as ischemia-reperfusion injury (IRI). However, the underlying pathological mechanisms of IRI remain to be completely understood. Ferroptosis is a novel type of regulated cell death that is associated with various pathological conditions, including angiocardiopathy. The purpose of this article was to elucidate the possible mechanistic role of ferroptosis in IRI through bioinformatics analysis and experimental validation. Healthy and IRI heart samples were screened for differentially expressed ferroptosis-related genes and functional enrichment analysis was performed to determine the potential crosstalk and pathways involved. A protein-protein interaction network was established for IRI, and 10 hub genes that regulate ferroptosis, including HIF1A, EGFR, HMOX1, and ATF3 were identified. In vitro, an anoxia/reoxygenation (A/R) injury model was established using H9c2 cardiomyoblasts to validate the bioinformatics analysis results, and extensive ferroptosis was detected. A total of 4 key hub genes and 3 key miRNAs were also validated. It was found that IRI was related to the aberrant infiltration of immune cells and the small-molecule drugs that may protect against IRI by preventing ferroptosis were identified. These results provide novel insights into the role of ferroptosis in IRI, which can help identify novel therapeutic targets.

16.
Inorg Chem ; 62(38): 15346-15351, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37682658

RESUMEN

Its high coordination number and tendency to cluster make Th4+ suitable for constructing metal-organic frameworks (MOFs) with novel topologies. In this work, two novel thorium-based heterometallic MOF isomers (IHEP-17 and IHEP-18) were assembled from a Th6 cluster, a multifunctional organic ligand [4-(1H-pyrazol-4-yl)benzoic acid (HPyba)], and Cu2+/Ni2+ cations via the one-pot solvothermal synthesis strategy. The framework features a 6,12-connected new topology net and contains two kinds of supramolecular cage structures, Th36M4 and Th24M2, suitable for guest exchange. Both MOF materials can efficiently adsorb I2. X-ray photoelectron spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction indicate that the adsorbed iodine is uniformly distributed within the Th36M4 cage but not the Th24M2 cage in the form of I3-.

17.
J Phys Chem A ; 127(36): 7479-7486, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37668451

RESUMEN

The separation of plutonium (Pu) from spent nuclear fuel was achieved by effectively adjusting the oxidation state of Pu from +IV to +III in the plutonium uranium reduction extraction (PUREX) process. Acetaldoxime (CH3CHNOH) as a free salt reductant can rapidly reduce Pu(IV), but the reduction mechanism remains indistinct. Herein, we explore the reduction mechanism of two Pu(IV) ions by one CH3CHNOH molecule, where the second Pu(IV) reduction is the rate-determining step with the energy barrier of 19.24 kcal mol-1, which is in line with the experimental activation energy (20.95 ± 2.34 kcal mol-1). Additionally, the results of structure and spin density analyses demonstrate that the first and second Pu(IV) reduction is attributed to hydrogen atom transfer and hydroxyl ligand transfer, respectively. Analysis of localized molecular orbitals unveils that the reduction process is accompanied by the breaking of the Pu-OOH bond and the formation of the OOH-H and C-OOH bonds. The reaction energies confirm that the reduction of Pu(IV) by acetaldoxime is both thermodynamically and kinetically accessible. In this work, we elucidate the reduction mechanism of Pu(IV) with CH3CHNOH, which provides a theoretical understanding of the rapid reduction of Pu(IV).

18.
J Am Chem Soc ; 145(32): 18148-18159, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37531566

RESUMEN

Efficient transfer of charge carriers through a fast transport pathway is crucial to excellent photocatalytic reduction performance in solar-driven CO2 reduction, but it is still challenging to effectively modulate the electronic transport pathway between photoactive motifs by feasible chemical means. In this work, we propose a thermally induced strategy to precisely modulate the fast electron transport pathway formed between the photoactive motifs of a porphyrin metal-organic framework using thorium ion with large ionic radius and high coordination number as the coordination-labile metal node. As a result, the stacking pattern of porphyrin molecules in the framework before and after the crystal transformations has changed dramatically, which leads to significant differences in the separation efficiency of photogenerated carriers in MOFs. The rate of photocatalytic reduction of CO2 to CO by IHEP-22(Co) reaches 350.9 µmol·h-1·g-1, which is 3.60 times that of IHEP-21(Co) and 1.46 times that of IHEP-23(Co). Photoelectrochemical characterizations and theoretical calculations suggest that the electron transport channels formed between porphyrin molecules inhibit the recombination of photogenerated carriers, resulting in high performance for photocatalytic CO2 reduction. The interaction mechanism of CO2 with IHEP-22(Co) was clarified by using in-situ electron paramagnetic resonance, in-situ diffuse reflectance infrared Fourier transform spectroscopy, in-situ extended X-ray absorption fine structure spectroscopy, and theoretical calculations. These results provide a new method to regulate the efficient separation and migration of charge carriers in CO2 reduction photocatalysts and will be helpful to guide the design and synthesis of photocatalysts with superior performance for the production of solar fuels.

19.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570814

RESUMEN

Blueberries are fruits known for their high level of anthocyanins, which have high nutritional value and several biological properties. However, the chemical instability of anthocyanins is one of the major limitations of their application. The stability of blueberry anthocyanin extracts (BAEs) encapsulated in a ferritin nanocarrier was investigated in this study for several influencing parameters, including pH, temperature, UV-visible light, redox agents, and various metal ions. The outcomes supported the positive role of protein nanoparticles in enhancing the stability of blueberry anthocyanins by demonstrating that the stability of encapsulated BAE nanoparticles with ferritin carriers was significantly higher than that of free BAEs and a mixture of BAEs and ferritin carriers. This study provides an alternative approach for enhancing blueberry anthocyanin stability using ferritin nanocarrier encapsulation.


Asunto(s)
Antocianinas , Arándanos Azules (Planta) , Antocianinas/química , Arándanos Azules (Planta)/química , Ferritinas , Extractos Vegetales/química , Luz , Frutas/química
20.
Adv Sci (Weinh) ; 10(28): e2302928, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541300

RESUMEN

Proton exchange membrane fuel cells (PEMFCs) have garnered significant attention due to their high efficiency and low emissions. However, PEMFC always suffers mass transfer and water management in performance improvement. Herein, an integrated gas diffusion layer (GDL) with wavy channel and micro-tunneled rib is designed and prepared to achieve faster and gentler mass transfer and excellent water management capability by laser engraving. Outstandingly, the new integrated GDL can use the back pressure of air as low as 0 and 50 kPa to respectively achieve 80% and 90% of fuel cell performance realized under pure oxygen. Such high performance is mainly due to the turbulent flow caused by wavy channel and express removing pathway of liquid water provided by micro-tunneled rib. Moreover, the new integrated GDL also shows wide humidity tolerance from 40% to 100% and a very high specific volume power density of 16,300 W L-1 due to the thin thickness of new integrated GDL. This new integrated GDL is expected to be widely used in PEMFC and other energy conversion devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA