Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (205)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497634

RESUMEN

Tendinopathy is a chronic tendon condition that results in pain and loss of function and is caused by repeated overload of the tendon and limited recovery time. This protocol describes a testing system that cyclically applies mechanical loads via passive dorsiflexion to the rat Achilles tendon. The custom-written code consists of pre- and post-cyclic loading measurements to assess the effects of the loading protocol along with the feedback control-based cyclic fatigue loading regimen. We used 25 Sprague-Dawley rats for this study, with 5 rats per group receiving either 500, 1,000, 2,000, 3,600, or 7,200 cycles of fatigue loads. The percentage differences between the pre- and post-cyclic loading measurements of the hysteresis, peak stress, and loading and unloading moduli were calculated. The results demonstrate that the system can induce varying degrees of damage to the Achilles tendon based on the number of loads applied. This system offers an innovative approach to apply quantified and physiological varying degrees of cyclic loads to the Achilles tendon for an in vivo model of fatigue-induced overuse tendon injury.


Asunto(s)
Tendón Calcáneo , Tendinopatía , Animales , Ratas , Ratas Sprague-Dawley , Tobillo , Cultura , Tendinopatía/etiología
2.
Front Bioeng Biotechnol ; 12: 1327094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515627

RESUMEN

Introduction: Tendinopathy is a degenerative condition resulting from tendons experiencing abnormal levels of multi-scale damage over time, impairing their ability to repair. However, the damage markers associated with the initiation of tendinopathy are poorly understood, as the disease is largely characterized by end-stage clinical phenotypes. Thus, this study aimed to evaluate the acute tendon responses to successive fatigue bouts of tendon overload using an in vivo passive ankle dorsiflexion system. Methods: Sprague Dawley female rats underwent fatigue overloading to their Achilles tendons for 1, 2, or 3 loading bouts, with two days of rest in between each bout. Mechanical, structural, and biological assays were performed on tendon samples to evaluate the innate acute healing response to overload injuries. Results: Here, we show that fatigue overloading significantly reduces in vivo functional and mechanical properties, with reductions in hysteresis, peak stress, and loading and unloading moduli. Multi-scale structural damage on cellular, fibril, and fiber levels demonstrated accumulated micro-damage that may have induced a reparative response to successive loading bouts. The acute healing response resulted in alterations in matrix turnover and early inflammatory upregulations associated with matrix remodeling and acute responses to injuries. Discussion: This work demonstrates accumulated damage and acute changes to the tendon healing response caused by successive bouts of in vivo fatigue overloads. These results provide the avenue for future investigations of long-term evaluations of tendon overload in the context of tendinopathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...