Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117110

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA that differentiates the most common macroscopic subtypes (e.g., mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma, is a prominent desmoplastic reaction manifested as a dense fibro-collagenous enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. While the pro-tumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence has been described to support CAFs potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, we provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.

2.
Lab Chip ; 24(15): 3690-3703, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38973701

RESUMEN

Changes in the abundance of certain bacterial species within the colorectal microbiota correlate with colorectal cancer (CRC) development. While carcinogenic mechanisms of single pathogenic bacteria have been characterized in vitro, limited tools are available to investigate interactions between pathogenic bacteria and both commensal microbiota and colonocytes in a physiologically relevant tumor microenvironment. To address this, we developed a microfluidic device that can be used to co-culture colonocyte spheroids and colorectal microbiota. The device was used to explore the effect of Fusobacterium nucleatum, an opportunistic pathogen associated with colorectal cancer development in humans, on colonocyte gene expression and microbiota composition. F. nucleatum altered the transcription of genes involved in cytokine production, epithelial-to-mesenchymal transition, and proliferation in colonocytes in a contact-independent manner; however, most of these effects were significantly diminished by the presence of commensal microbiota. Interestingly, F. nucleatum significantly altered the abundance of multiple bacterial clades associated with mucosal immune responses and cancer development in the colon. Our results highlight the importance of evaluating the potential carcinogenic activity of pathogens in the context of a commensal microbiota, and the potential to discover novel inter-species microbial interactions in the CRC microenvironment.


Asunto(s)
Técnicas de Cocultivo , Colon , Neoplasias Colorrectales , Fusobacterium nucleatum , Humanos , Técnicas de Cocultivo/instrumentación , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Colon/microbiología , Colon/patología , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Transición Epitelial-Mesenquimal , Microbiota , Proliferación Celular
3.
J Am Soc Nephrol ; 35(5): 549-565, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38506705

RESUMEN

SIGNIFICANCE STATEMENT: The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND: The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS: Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS: We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS: In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Células Endoteliales , Daño por Reperfusión , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Ratones , Células Endoteliales/metabolismo , Riñón/patología , Riñón/metabolismo , Masculino , Ratones Endogámicos C57BL , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología
4.
Arterioscler Thromb Vasc Biol ; 44(5): e145-e167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482696

RESUMEN

BACKGROUND: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS: Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS: Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.


Asunto(s)
Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-fos , Transcriptoma , Proteínas de Unión al GTP rho , Animales , Humanos , Ratones , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/genética , Fenotipo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Transducción de Señal , Análisis de la Célula Individual , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...