Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Protein Sci ; 33(7): e5068, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38864739

RESUMEN

Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.


Asunto(s)
Proteínas de Escherichia coli , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Pliegue de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética
3.
Commun Biol ; 7(1): 372, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548811

RESUMEN

Kindlins serve as mechanosensitive adapters, transducing extracellular mechanical cues to intracellular biochemical signals and thus, their perturbations potentially lead to cancer progressions. Despite the kindlin involvement in tumor development, understanding their genetic and mechanochemical characteristics across different cancers remains elusive. Here, we thoroughly examined genetic alterations in kindlins across more than 10,000 patients with 33 cancer types. Our findings reveal cancer-specific alterations, particularly prevalent in advanced tumor stage and during metastatic onset. We observed a significant co-alteration between kindlins and mechanochemical proteome in various tumors through the activation of cancer-related pathways and adverse survival outcomes. Leveraging normal mode analysis, we predicted structural consequences of cancer-specific kindlin mutations, highlighting potential impacts on stability and downstream signaling pathways. Our study unraveled alterations in epithelial-mesenchymal transition markers associated with kindlin activity. This comprehensive analysis provides a resource for guiding future mechanistic investigations and therapeutic strategies targeting the roles of kindlins in cancer treatment.


Asunto(s)
Proteínas de la Membrana , Proteínas de Neoplasias , Neoplasias , Humanos , Neoplasias/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética
4.
Nanoscale ; 16(5): 2540-2551, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214221

RESUMEN

Osmolytes are well known to protect the protein structure against different chemical and physical denaturants. Since their actions with protein surfaces are mechanistically complicated and context dependent, the underlying molecular mechanism is not fully understood. Here, we combined single-molecule magnetic tweezers and molecular dynamics (MD) simulation to explore the mechanical role of osmolytes from two different classes, trimethylamine N-oxide (TMAO) and trehalose, as mechanical stabilizers of protein structure. We observed that these osmolytes increase the protein L mechanical stability by decreasing unfolding kinetics while accelerating the refolding kinetics under force, eventually shifting the energy landscape toward the folded state. These osmolytes mechanically stabilize the protein L and plausibly guide them to more thermodynamically robust states. Finally, we observed that osmolyte-modulated protein folding increases mechanical work output up to twofold, allowing the protein to fold under a higher force regime and providing a significant implication for folding-induced structural stability in proteins.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química , Simulación de Dinámica Molecular , Estabilidad Proteica , Metilaminas/química , Metilaminas/farmacología , Termodinámica
5.
Trends Biochem Sci ; 49(1): 38-51, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37980187

RESUMEN

Molecular chaperones play central roles in sustaining protein homeostasis and preventing protein aggregation. Most studies of these systems have been performed in bulk, providing averaged measurements, though recent single-molecule approaches have provided an in-depth understanding of the molecular mechanisms of their activities and structural rearrangements during substrate recognition. Chaperone activities have been observed to be substrate specific, with some associated with ATP-dependent structural dynamics and others via interactions with co-chaperones. This Review aims to describe the novel mechanisms of molecular chaperones as revealed by single-molecule approaches, and to provide insights into their functioning and its implications for protein homeostasis and human diseases.


Asunto(s)
Chaperonas Moleculares , Pliegue de Proteína , Humanos , Chaperonas Moleculares/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo
6.
Nano Converg ; 10(1): 42, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695365

RESUMEN

Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.

8.
Artículo en Inglés | MEDLINE | ID: mdl-36430053

RESUMEN

High ambient temperature is a key public health problem, as it is linked to high heat-related morbidity and mortality. We intended to recognize the characteristics connected to heat vulnerability and the coping practices among Indian urbanites of Angul and Kolkata. In 2020, a cross-sectional design was applied to 500 households (HHs) each in Angul and Kolkata. Information was gathered on various characteristics including sociodemographics, household, exposure, sensitivity, and coping practices regarding heat and summer heat illness history, and these characteristics led to the computation of a heat vulnerability index (HVI). Bivariate and multivariable logistic regression analyses were used with HVI as the outcome variable to identify the determinants of high vulnerability to heat. The results show that some common and some different factors are responsible for determining the heat vulnerability of a household across different cities. For Angul, the factors that influence vulnerability are a greater number of rooms in houses, the use of cooling methods such as air conditioning, having comorbid conditions, the gender of the household head, and distance from nearby a primary health centre (PHC). For Kolkata, the factors are unemployment, income, the number of rooms, sleeping patterns, avoidance of nonvegetarian food, sources of water, comorbidities, and distance from a PHC. The study shows that every city has a different set of variables that influences vulnerability, and each factor should be considered in design plans to mitigate vulnerability to extreme heat.


Asunto(s)
Calor Extremo , Humanos , Calor Extremo/efectos adversos , Estudios Transversales , Calor , India/epidemiología , Fiebre , Composición Familiar
9.
RSC Adv ; 12(36): 23552-23565, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36090394

RESUMEN

The kinetics of Bergman cyclization (BC) of enediynes into 1,4-benzene diradicals (also known as p-benzynes) have attracted interest ever since the discovery of natural enediynes which pointed out a surprising reactivity profile difference across enediynes with varying structural architectures. From the analysis of experimental kinetic data, several models were proposed to have a structure-kinetics correlation, out of which, the cd-distance model and the transition state model are the most accepted ones. Recently, Houk et al. introduced a distortion model to explain the regioselectivity of nucleophilic addition to unsymmetrical o-benzynes based on the geometry of the transition state. In the case of BC, since the reaction is endothermic, the transition state geometrically resembles the product structure which implies that in the reaction pathway, the sp-carbons of enediynes are transformed into the trigonal sp2 carbons of the benzenoid product. Thus, greater bending of the interior angles at the proximal alkyne carbons in the enediynes will lead to a lower activation barrier for the BC and hence faster cyclization. This hypothesis has been tested on a series of enediynes including natural product surrogates and the extent of deviation correlates well with the kinetic results. A cut-off value for the average internal proximal angles has been proposed to categorize enediynes as per their reactivity under ambient conditions. We believe that this distortion theory offers an alternative model in designing new unnatural enediynes with desired kinetic stabilities.

10.
Biomacromolecules ; 23(7): 2951-2967, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35678300

RESUMEN

Protein folding under force is an integral source of generating mechanical energy in various cellular processes, ranging from protein translation to degradation. Although chaperones are well known to interact with proteins under mechanical force, how they respond to force and control cellular energetics remains unknown. To address this question, we introduce a real-time magnetic tweezer technology herein to mimic the physiological force environment on client proteins, keeping the chaperones unperturbed. We studied two structurally distinct client proteins--protein L and talin with seven different chaperones─independently and in combination and proposed a novel mechanical activity of chaperones. We found that chaperones behave differently, while these client proteins are under force, than their previously known functions. For instance, tunnel-associated chaperones (DsbA and trigger factor), otherwise working as holdase without force, assist folding under force. This process generates an additional mechanical energy up to ∼147 zJ to facilitate translation or translocation. However, well-known cytoplasmic foldase chaperones (PDI, thioredoxin, or DnaKJE) do not possess the mechanical folding ability under force. Notably, the transferring chaperones (DnaK, DnaJ, and SecB) act as holdase and slow down the folding process, both in the presence and absence of force, to prevent misfolding of the client proteins. This provides an emerging insight of mechanical roles of chaperones: they can generate or consume energy by shifting the energy landscape of the client proteins toward a folded or an unfolded state, suggesting an evolutionary mechanism to minimize energy consumption in various biological processes.


Asunto(s)
Proteínas Bacterianas , Chaperonas Moleculares , Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína
11.
Nanoscale ; 14(20): 7659-7673, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35546109

RESUMEN

The structure-function dynamics of a protein as a flexible polymer is essential to describe its biological functions. Here, using single-molecule magnetic tweezers, we have studied the effect of ionic strength on the folding mechanics of protein L, and probed its folding-associated physical properties by re-measuring the same protein in a range of ammonium sulfate concentrations from 150 mM to 650 mM. We observed an electrolyte-dependent conformational dynamics and folding landscape of the protein in a single experiment. Salt increases the refolding kinetics, while decreasing the unfolding kinetics under force, which in turn modifies the barrier heights towards the folded state. Additionally, salt enhances the molecular compaction by decreasing the Kuhn length of the protein polymer from 1.18 nm to 0.58 nm, which we have explained by modifying the freely jointed chain model. Finally, we correlated polymer chain physics to the folding dynamics, and thus provided an analytical framework for understanding compaction-induced folding mechanics across a range of ionic strengths from a single experiment.


Asunto(s)
Pliegue de Proteína , Proteínas , Cinética , Polímeros , Conformación Proteica , Termodinámica
12.
Front Cell Dev Biol ; 10: 852878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372360

RESUMEN

The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell-extracellular matrix (ECM) and cell-cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases' prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.

13.
Commun Biol ; 5(1): 307, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379917

RESUMEN

Talin as a critical focal adhesion mechanosensor exhibits force-dependent folding dynamics and concurrent interactions. Being a cytoplasmic protein, talin also might interact with several cytosolic chaperones; however, the roles of chaperones in talin mechanics remain elusive. To address this question, we investigated the force response of a mechanically stable talin domain with a set of well-known unfoldase (DnaJ, DnaK) and foldase (DnaKJE, DsbA) chaperones, using single-molecule magnetic tweezers. Our findings demonstrate that chaperones could affect adhesion proteins' stability by changing their folding mechanics; while unfoldases reduce their unfolding force from ~11 pN to ~6 pN, foldase shifts it upto ~15 pN. Since talin is mechanically synced within 2 pN force ranges, these changes are significant in cellular conditions. Furthermore, we determined that chaperones directly reshape the energy landscape of talin: unfoldases decrease the unfolding barrier height from 26.8 to 21.7 kBT, while foldases increase it to 33.5 kBT. We reconciled our observations with eukaryotic Hsp70 and Hsp40 and observed their similar function of decreasing the talin unfolding barrier. Quantitative mapping of this chaperone-induced talin folding landscape directly illustrates that chaperones perturb the adhesion protein stability under physiological force, thereby, influencing their force-dependent interactions and adhesion dynamics.


Asunto(s)
Chaperonas Moleculares , Talina , Adhesiones Focales/metabolismo , Fenómenos Mecánicos , Chaperonas Moleculares/metabolismo , Estabilidad Proteica , Talina/metabolismo
14.
Faraday Discuss ; 234(0): 42-57, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35174376

RESUMEN

An efficient electrochemical method for the selective oxidation of alcohols to their corresponding aldehydes/ketones using a biomimetic iron complex, [(bTAML)FeIII-OH2]-, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes using water as an oxygen source is reported. The substrate scope also includes alcohols that contain O and N heteroatoms in the scaffold, which are well tolerated under these reaction conditions. Mechanistic studies show the involvement of a high-valent FeV(O) species, [(bTAML)FeV(O)]-, formed via PCET (overall 2H+/2e-) from [(bTAML)FeIII-OH2]- at 0.77 V (vs. Fc+/Fc). Moreover, electrokinetic studies of the oxidation of C-H bonds indicate a second-order reaction, with the C-H abstraction by FeV(O) being the rate-determining step. The overall mechanism, studied using linear free energy relationships and radical clocks, indicates a "net hydride" transfer, leading to the oxidation of the alcohol to the corresponding aldehyde or ketone. When the reaction was carried out at pH > 11, the reaction could be carried out at a ∼500 mV lower potential than that at pH 8, albeit with reduced reaction rates. The reactive intermediate involved at pH > 11 is the corresponding one-electron oxidized [(bTAML)FeIV(O)]2- species.


Asunto(s)
Hierro , Oxígeno , Alcoholes , Electrones , Hierro/química , Oxidación-Reducción , Oxígeno/química
15.
Chem Sci ; 12(33): 11109-11120, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34522308

RESUMEN

DsbA is a ubiquitous bacterial oxidoreductase that associates with substrates during and after translocation, yet its involvement in protein folding and translocation remains an open question. Here we demonstrate a redox-controlled chaperone activity of DsbA, on both cysteine-containing and cysteine-free substrates, using magnetic tweezers-based single molecule force spectroscopy that enables independent measurements of oxidoreductase activity and chaperone behavior. Interestingly we found that this chaperone activity is tuned by the oxidation state of DsbA; oxidized DsbA is a strong promoter of folding, but the effect is weakened by the reduction of the catalytic CXXC motif. We further localize the chaperone binding site of DsbA using a seven-residue peptide which effectively blocks the chaperone activity. We found that the DsbA assisted folding of proteins in the periplasm generates enough mechanical work to decrease the ATP consumption needed for periplasmic translocation by up to 33%.

16.
Annu Rev Biophys ; 50: 419-445, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33646813

RESUMEN

Single-molecule technologies have expanded our ability to detect biological events individually, in contrast to ensemble biophysical technologies, where the result provides averaged information. Recent developments in atomic force microscopy have not only enabled us to distinguish the heterogeneous phenomena of individual molecules, but also allowed us to view up to the resolution of a single covalent bond. Similarly, optical tweezers, due to their versatility and precision, have emerged as a potent technique to dissect a diverse range of complex biological processes, from the nanomechanics of ClpXP protease-dependent degradation to force-dependent processivity of motor proteins. Despite the advantages of optical tweezers, the time scales used in this technology were inconsistent with physiological scenarios, which led to the development of magnetic tweezers, where proteins are covalently linked with the glass surface, which in turn increases the observation window of a single biomolecule from minutes to weeks. Unlike optical tweezers, magnetic tweezers use magnetic fields to impose torque, which makes them convenient for studying DNA topology and topoisomerase functioning. Using modified magnetic tweezers, researchers were able to discover the mechanical role of chaperones, which support their substrate proteinsby pulling them during translocation and assist their native folding as a mechanical foldase. In this article, we provide a focused review of many of these new roles of single-molecule technologies, ranging from single bond breaking to complex chaperone machinery, along with the potential to design mechanomedicine, which would be a breakthrough in pharmacological interventions against many diseases.


Asunto(s)
Fenómenos Bioquímicos , Biofisica , ADN/química , Humanos , Magnetismo/métodos , Chaperonas Moleculares , Nanotecnología
17.
Artículo en Inglés | MEDLINE | ID: mdl-35010542

RESUMEN

Extreme heat and heat waves have been established as disasters which can lead to a great loss of life. Several studies over the years, both within and outside of India, have shown how extreme heat events lead to an overall increase in mortality. However, the impact of extreme heat, similar to other disasters, depends upon the vulnerability of the population. This study aims to assess the extreme heat vulnerability of the population of four cities with different characteristics across India. This cross-sectional study included 500 households from each city across the urban localities (both slum and non-slum) of Ongole in Andhra Pradesh, Karimnagar in Telangana, Kolkata in West Bengal and Angul in Odisha. Twenty-one indicators were used to construct a household vulnerability index to understand the vulnerability of the cities. The results have shown that the majority of the households fell under moderate to high vulnerability level across all the cities. Angul and Kolkata were found to be more highly vulnerable as compared to Ongole and Karimnagar. Further analysis also revealed that household vulnerability is more significantly related to adaptive capacity than sensitivity and exposure. Heat Vulnerability Index can help in identifying the vulnerable population and scaling up adaptive practices.


Asunto(s)
Calor Extremo , Calor , Ciudades , Estudios Transversales , Áreas de Pobreza
19.
Biochemistry ; 58(47): 4677-4695, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31393109

RESUMEN

Mechanotransduction from the extracellular matrix into the cell is primarily supervised by a transmembrane receptor, integrin, and a cytosolic protein, talin. Integrin binds ligands on the extracellular side, whereas talin couples integrin receptors to the actin cytoskeleton and later acts as a "force buffer". Talin and integrin together form a mechanosensitive signaling hub that regulates crucial cellular processes and pathways, including cell signaling and formation of focal adhesion complexes, which help cells to sense their mechano-environment and transduce the signal accordingly. Although both proteins function in tandem, most literature focuses on them individually. Here, we provide a focused review of the talin-integrin mechano-interactome network in light of its role in the process of mechanotransduction and its connection to diseases. While working under force, these proteins drive numerous biomolecular interactions and form adhesion complexes, which in turn control many physiological processes such as cell migration; thus, they are invariably associated with several diseases from leukocyte adhesion deficiency to cancer. Gaining insights into their role in the occurrence of these pathological disorders might lead us to establish treatment methods and therapeutic techniques.


Asunto(s)
Integrinas/metabolismo , Mecanotransducción Celular/fisiología , Talina/metabolismo , Animales , Adhesiones Focales , Humanos , Transducción de Señal
20.
J Oral Maxillofac Pathol ; 20(1): 147-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27194879

RESUMEN

Sinonasal teratocarcinosarcoma is an extremely rare malignant tumor arising in the sinonasal tract, having combined histological features of teratoma and carcinosarcoma. Here, we are presenting a case of sinonasal teratocarcinosarcoma in a 28-year-old male patient. A 28-year-old male patient presented with left-sided nasal obstruction and recurrent epistaxis for last 2 months. On examination, a polypoid mass was noted in the left nasal cavity. The mass was surgically resected. Paraffin-embedded sections were made and stained with hematoxylin and eosin. Microscopic examination revealed intimate admixture of carcinomatous (adenocarcinoma), sarcomatous (chondrosarcoma), primitive neuroendocrine and teratoid elements (immature squamous elements). These findings clearly suggest the diagnosis of sinonasal teratocarcinosarcoma. Sinonasal teratocarcinosarcoma is highly malignant and locally aggressive. About 60% of the patients do not survive beyond 3 years. Total excision and extensive sampling are necessary to reach the diagnosis. Early diagnosis and management can give a better prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...