Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 21608, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517498

RESUMEN

In 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impairment (native percent loss of hydraulic conductivity, PLC) of 18 native tree species growing at 15 sites that were heavily impacted by the drought both during and 8-10 months after the drought. Most species exhibited high PLC during drought (PLC:65.1 ± 3.3%), with no clear patterns across sites or species. Heavily impaired trees (PLC > 70%) showed extensive canopy browning. In the post-drought period, most surviving trees exhibited hydraulic recovery (PLC:26.1 ± 5.1%), although PLC remained high in some trees (50-70%). Regained hydraulic function (PLC < 50%) corresponded to decreased canopy browning indicating improved tree health. Similar drought (37.1 ± 4.2%) and post-drought (35.1 ± 4.4%) percentages of basal area with dead canopy suggested that trees with severely compromised canopies immediately after drought were not able to recover. This dataset provides insights into the impacts of severe natural drought on the health of mature trees, where hydraulic failure is a major contributor in canopy dieback and tree mortality during extreme drought events.


Asunto(s)
Sequías , Bosques , Australia , Árboles , Agua
2.
Tree Physiol ; 42(4): 708-721, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34312674

RESUMEN

The viability of forest trees, in response to climate change-associated drought, will depend on their capacity to survive through genetic adaptation and phenotypic plasticity in drought tolerance traits. Genotypes with enhanced plasticity for drought tolerance (adaptive plasticity) will have a greater ability to persist and delay the onset of hydraulic failure. By examining populations from different climate-origins grown under contrasting soil water availability, we tested for genotype (G), environment (E) and genotype-by-environment (G × E) effects on traits that determine the time it takes for saplings to desiccate from stomatal closure to 88% loss of stem hydraulic conductance (time to hydraulic failure, THF). Specifically, we hypothesized that: (i) THF is dependent on a G × E interaction, with longer THF for warm, dry climate populations in response to chronic water deficit treatment compared with cool, wet populations, and (ii) hydraulic and allometric traits explain the observed patterns in THF. Corymbia calophylla saplings from two populations originating from contrasting climates (warm-dry or cool-wet) were grown under well-watered and chronic soil water deficit treatments in large containers. Hydraulic and allometric traits were measured and then saplings were dried-down to critical levels of drought stress to estimate THF. Significant plasticity was detected in the warm-dry population in response to water-deficit, with enhanced drought tolerance compared with the cool-wet population. Projected leaf area and total plant water storage showed treatment variation, and minimum conductance showed significant population differences driving longer THF in trees from warm-dry origins grown in water-limited conditions. Our findings contribute information on intraspecific variation in key drought traits, including hydraulic and allometric determinants of THF. It highlights the need to quantify adaptive capacity in populations of forest trees in climate change-type drought to improve predictions of forest die-back.


Asunto(s)
Sequías , Árboles , Adaptación Fisiológica , Hojas de la Planta/fisiología , Suelo , Árboles/fisiología , Agua
3.
New Phytol ; 232(3): 1212-1225, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34292598

RESUMEN

The frequency and severity of heatwave events are increasing, exposing species to conditions beyond their physiological limits. Species respond to heatwaves in different ways, however it remains unclear if plants have the adaptive capacity to successfully respond to hotter and more frequent heatwaves. We exposed eight tree populations from two climate regions grown under cool and warm temperatures to repeated heatwave events of moderate (40°C) and extreme (46°C) severity to assess adaptive capacity to heatwaves. Leaf damage and maximum quantum efficiency of photosystem II (Fv /Fm ) were significantly impacted by heatwave severity and growth temperatures, respectively; populations from a warm-origin avoided damage under moderate heatwaves compared to those from a cool-origin, indicating a degree of local adaptation. We found that plasticity to heatwave severity and repeated heatwaves contributed to enhanced thermal tolerance and lower leaf temperatures, leading to greater thermal safety margins (thermal tolerance minus leaf temperature) in a second heatwave. Notably, while we show that adaptation and physiological plasticity are important factors affecting plant adaptive capacity to thermal stress, plasticity of thermal tolerances and thermal safety margins provides the opportunity for trees to persist among fluctuating heatwave exposures.


Asunto(s)
Hojas de la Planta , Árboles , Aclimatación , Clima , Temperatura
4.
Ecol Evol ; 10(1): 232-248, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31988725

RESUMEN

Climate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade-off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways.We measured genetically determined trait variation and described patterns of correlation for seven traits: photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ13C (integrated water-use efficiency, WUE), nitrogen concentration (NCONC), and wood density (WD). All measures were conducted in an experimental plantation on 960 trees sourced from 12 populations of a key forest canopy species in southwestern Australia.Significant differences were found between populations for all traits. Narrow-sense heritability was significant for five traits (0.15-0.21), indicating that natural selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not significantly heritable. Generalized additive models predicted trait values across the landscape for current and future climatic conditions (>90% variance). The percent change differed markedly among traits between current and future predictions (differing as little as 1.5% (δ13C) or as much as 30% (PRI)). Some trait correlations were predicted to break down in the future (SLA:NCONC, δ13C:PRI, and NCONC:WD).Synthesis: Our results suggest that traits have contrasting genotypic patterns and will be subjected to different climate selection pressures, which may lower the working optimum for functional traits. Further, traits are independently associated with different climate factors, indicating that some trait correlations may be disrupted in the future. Genetic constraints and trait correlations may limit the ability for functional traits to adapt to climate change.

5.
Evol Appl ; 12(6): 1178-1190, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31293630

RESUMEN

Natural ecosystems are under pressure from increasing abiotic and biotic stressors, including climate change and novel pathogens, which are putting species at risk of local extinction, and altering community structure, composition and function. Here, we aim to assess adaptive variation in growth and fungal disease resistance within a foundation tree, Corymbia calophylla to determine local adaptation, trait heritability and genetic constraints in adapting to future environments. Two experimental planting sites were established in regions of contrasting rainfall with seed families from 18 populations capturing a wide range of climate origins (~4,000 individuals at each site). Every individual was measured in 2015 and 2016 for growth (height, basal diameter) and disease resistance to a recently introduced leaf blight pathogen (Quambalaria pitereka). Narrow-sense heritability was estimated along with trait covariation. Trait variation was regressed against climate-of-origin, and multivariate models were used to develop predictive maps of growth and disease resistance. Growth and blight resistance traits differed significantly among populations, and these differences were consistent between experimental sites and sampling years. Growth and blight resistance were heritable, and comparisons between trait differentiation (Q ST) and genetic differentiation (F ST) revealed that population differences in height and blight resistance traits are due to divergent natural selection. Traits were significantly correlated with climate-of-origin, with cool and wet populations showing the highest levels of growth and blight resistance. These results provide evidence that plants have adaptive growth strategies and pathogen defence strategies. Indeed, the presence of standing genetic variation and trait heritability of growth and blight resistance provide capacity to respond to novel, external pressures. The integration of genetic variation into adaptive management strategies, such as assisted gene migration and seed sourcing, may be used to provide greater resilience for natural ecosystems to both biotic and abiotic stressors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...