Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(1): 4-21, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37993417

RESUMEN

Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.


Cancer cells driven by runaway transcription factor networks frequently depend on the cellular machinery that promotes DNA accessibility. For this reason, recently developed small molecules that impair SWI/SNF (or BAF) chromatin remodeling activity have been under active evaluation as anti-cancer agents. However, exactly when SWI/SNF activity is essential in dependent cancers has remained unknown. By combining live-cell imaging and genome-wide profiling in neuroblastoma cells, Cermakova et al. discover that SWI/SNF activity is needed for survival only during G1 phase of the cell cycle. The authors reveal that in several cancer settings, dependency on SWI/SNF arises from the need to reactivate factors involved in G1-S transition. Because of this role, authors find that SWI/SNF inhibition potentiates cell-cycle exit by retinoic acid.


Asunto(s)
Fase G1 , Neoplasias , Factores de Transcripción , Humanos , Ciclo Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Elementos de Facilitación Genéticos
2.
J Perioper Pract ; 34(7-8): 219-225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38149496

RESUMEN

Prehabilitation, or interventions before surgery aimed at improving preoperative health and postoperative outcomes, has various forms. Although it may confer benefit to patients undergoing general surgery, this is not certain. Furthermore, although it may yield a net monetary gain, it is also likely to require substantial monetary and non-monetary investment. The impact of prehabilitation is highly variable and dependent on multiple factors. Physical function and pulmonary outcomes are likely to be improved by most forms of prehabilitation involving physical and multimodal exercise programmes. However, other surgical outcomes have demonstrated mixed results from prehabilitation. Within this issue, the measures used for evaluating baseline patient biopsychosocial health are important, and collecting sufficient data to accurately inform patient-centred prehabilitation programmes is only possible through thorough clinical and laboratory investigation and synthesised metrics such as cardiopulmonary exercise testing. Although a multimodal approach to prehabilitation is the current gold standard, societal factors may affect engagement with programmes that require a significant in-person activity. However, this is weighed against the substantial financial and non-financial investment that accompanies many programmes. The overall effectiveness and optimal mode of intervention across the discipline of general surgery remains unclear, and further research is needed to prove prehabilitation's full worth.


Asunto(s)
Ejercicio Preoperatorio , Humanos , Cuidados Preoperatorios/métodos , Cirugía General , Femenino , Masculino
3.
Cancer Res ; 83(7): 983-996, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36662812

RESUMEN

In acute myeloid leukemia (AML), SWI/SNF chromatin remodeling complexes sustain leukemic identity by driving high levels of MYC. Previous studies have implicated the hematopoietic transcription factor PU.1 (SPI1) as an important target of SWI/SNF inhibition, but PU.1 is widely regarded to have pioneer-like activity. As a result, many questions have remained regarding the interplay between PU.1 and SWI/SNF in AML as well as normal hematopoiesis. Here we found that PU.1 binds to most of its targets in a SWI/SNF-independent manner and recruits SWI/SNF to promote accessibility for other AML core regulatory factors, including RUNX1, LMO2, and MEIS1. SWI/SNF inhibition in AML cells reduced DNA accessibility and binding of these factors at PU.1 sites and redistributed PU.1 to promoters. Analysis of nontumor hematopoietic cells revealed that similar effects also impair PU.1-dependent B-cell and monocyte populations. Nevertheless, SWI/SNF inhibition induced profound therapeutic response in an immunocompetent AML mouse model as well as in primary human AML samples. In vivo, SWI/SNF inhibition promoted leukemic differentiation and reduced the leukemic stem cell burden in bone marrow but also induced leukopenia. These results reveal a variable therapeutic window for SWI/SNF blockade in AML and highlight important off-tumor effects of such therapies in immunocompetent settings. SIGNIFICANCE: Disruption of PU.1-directed enhancer programs upon SWI/SNF inhibition causes differentiation of AML cells and induces leukopenia of PU.1-dependent B cells and monocytes, revealing the on- and off-tumor effects of SWI/SNF blockade.


Asunto(s)
Leucemia Mieloide Aguda , Leucopenia , Animales , Ratones , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea/patología , Regiones Promotoras Genéticas , Diferenciación Celular , Leucopenia/genética
4.
Gene Ther ; 30(5): 429-442, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36372846

RESUMEN

Adeno-associated virus (AAV) vector-based gene therapies can be applied to a wide range of diseases. AAV expression can last for months to years, but vector re-administration may be necessary to achieve life-long treatment. Unfortunately, immune responses against these vectors are potentiated after the first administration, preventing the clinical use of repeated administration of AAVs. Reducing the immune response against AAVs while minimizing broad immunosuppression would improve gene delivery efficiency and long-term safety. In this study, we quantified the contributions of multiple immune system components of the anti-AAV response in mice. We identified B-cell-mediated immunity as a critical component preventing vector re-administration. Additionally, we found that IgG depletion alone was insufficient to enable re-administration, suggesting IgM antibodies play an important role in the immune response against AAV. Further, we found that AAV-mediated transduction is improved in µMT mice that lack functional IgM heavy chains and cannot form mature B-cells relative to wild-type mice. Combined, our results suggest that B-cells, including non-class switched B-cells, are a potential target for therapeutics enabling AAV re-administration. Our results also suggest that the µMT mice are a potentially useful experimental model for gene delivery studies since they allow repeated dosing for more efficient gene delivery from AAVs.


Asunto(s)
Dependovirus , Técnicas de Transferencia de Gen , Animales , Ratones , Dependovirus/genética , Terapia Genética , Inmunoglobulina M/genética , Vectores Genéticos/genética
5.
Nat Biomed Eng ; 5(10): 1115-1130, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34155355

RESUMEN

Silicone is widely used in chronic implants and is generally perceived to be safe. However, textured breast implants have been associated with immune-related complications, including malignancies. Here, by examining for up to one year the foreign body response and capsular fibrosis triggered by miniaturized or full-scale clinically approved breast implants with different surface topography (average roughness, 0-90 µm) placed in the mammary fat pads of mice or rabbits, respectively, we show that surface topography mediates immune responses to the implants. We also show that the surface surrounding human breast implants collected during revision surgeries also differentially alters the individual's immune responses to the implant. Moreover, miniaturized implants with an average roughness of 4 µm can largely suppress the foreign body response and fibrosis (but not in T-cell-deficient mice), and that tissue surrounding these implants displayed higher levels of immunosuppressive FOXP3+ regulatory T cells. Our findings suggest that, amongst the topographies investigated, implants with an average roughness of 4 µm provoke the least amount of inflammation and foreign body response.


Asunto(s)
Implantación de Mama , Implantes de Mama , Cuerpos Extraños , Animales , Implantación de Mama/efectos adversos , Implantes de Mama/efectos adversos , Reacción a Cuerpo Extraño/etiología , Humanos , Ratones , Conejos , Siliconas/efectos adversos
6.
ACS Macro Lett ; 8(11): 1474-1478, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-35651178

RESUMEN

Here, we show that the surface-initiated thiol-(meth)acrylate polymerization can be used to create brush polymer patterns with precise control over the feature height at each microscale pixel. The reaction was studied using a printer where a digital micromirror device controls light delivery to the surface, so multiple reaction conditions can be examined in each print. The resulting increases in experimental throughput and precision were demonstrated by studying systematically the effect of photocatalyst, photoinitiator, and light intensity on feature growth rate. In addition to demonstrating the utility of surface-initiated thiol-(meth)acrylate chemistry for creating complex brush polymer patterns, this work describes an improved and high-throughput approach for studying grafted-from photopolymerizations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...