Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sci Adv ; 8(35): eabo7958, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044575

RESUMEN

Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína Jagged-1 , Placa Aterosclerótica , Receptor Notch4 , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Transducción de Señal , Porcinos
2.
Nat Genet ; 54(7): 1037-1050, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35789323

RESUMEN

Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.


Asunto(s)
Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Genoma , Genómica , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Pez Cebra , Pez Cebra , Animales , Cromatina/genética , Genoma/genética , Humanos , Ratones , Anotación de Secuencia Molecular , Organogénesis/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
Nat Cancer ; 3(6): 681-695, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35437317

RESUMEN

Despite advances in precision medicine, the clinical prospects for patients with ovarian and uterine cancers have not substantially improved. Here, we analyzed genome-scale CRISPR-Cas9 loss-of-function screens across 851 human cancer cell lines and found that frequent overexpression of SLC34A2-encoding a phosphate importer-is correlated with sensitivity to loss of the phosphate exporter XPR1, both in vitro and in vivo. In patient-derived tumor samples, we observed frequent PAX8-dependent overexpression of SLC34A2, XPR1 copy number amplifications and XPR1 messenger RNA overexpression. Mechanistically, in SLC34A2-high cancer cell lines, genetic or pharmacologic inhibition of XPR1-dependent phosphate efflux leads to the toxic accumulation of intracellular phosphate. Finally, we show that XPR1 requires the novel partner protein KIDINS220 for proper cellular localization and activity, and that disruption of this protein complex results in acidic "vacuolar" structures preceding cell death. These data point to the XPR1-KIDINS220 complex and phosphate dysregulation as a therapeutic vulnerability in ovarian cancer.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Neoplasias Ováricas , Femenino , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosfatos/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Virales/genética , Receptor de Retrovirus Xenotrópico y Politrópico/genética , Receptor de Retrovirus Xenotrópico y Politrópico/metabolismo
4.
J Vis Commun Med ; 45(2): 39-47, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35341427

RESUMEN

Navigating for accurate information, especially health- and science-related content, on social media has been challenging during the COVID-19 pandemic. Although infographics are a popular medium for simplifying text-based information into visual components, their usefulness during a global health crisis has not been explored. The study aims to explore the perceptions of infographics in conveying scientific information related to COVID-19 on social media. Following a social media campaign that published COVID-19 related infographics from May to August 2020, a cross-sectional survey was administered to social media users, primarily students from Western University. Several questions asked respondents to make comparisons with written articles when reporting their perceptions of infographics. Seventy-three percent of students from 361 responses belonged to health-related academic backgrounds. Seventy-two percent felt more likely to share infographics than written articles on social media due to the visual appeal. Nearly 90% felt it was easier to navigate through complicated science and that more scientists should use infographics on social media. Educational background did not influence the perceived usefulness of infographics in understanding scientific information. Infographics are perceived favourably in conveying scientific information about COVID-19 on social media. Findings from this study can inform communication strategies during a pandemic and, more broadly, global crises.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , COVID-19/epidemiología , Comunicación , Estudios Transversales , Visualización de Datos , Humanos , Pandemias , Encuestas y Cuestionarios
5.
J Thorac Oncol ; 17(6): 779-792, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35331964

RESUMEN

INTRODUCTION: Patients with EGFR-mutant NSCLC experience variable duration of benefit on EGFR tyrosine kinase inhibitors. The effect of concurrent genomic alterations on outcome has been incompletely described. METHODS: In this retrospective study, targeted next-generation sequencing data were collected from patients with EGFR-mutant lung cancer treated at the Dana-Farber Cancer Institute. Clinical data were collected and correlated with somatic mutation data. Associations between TP53 mutation status, genomic features, and mutational processes were analyzed. RESULTS: A total of 269 patients were identified for inclusion in the cohort. Among 185 response-assessable patients with pretreatment specimens, TP53 alterations were the most common event associated with decreased first-line progression-free survival and decreased overall survival, along with DNMT3A, KEAP1, and ASXL1 alterations. Reduced progression-free survival on later-line osimertinib in 33 patients was associated with MET, APC, and ERBB4 alterations. Further investigation of the effect of TP53 alterations revealed an association with worse outcomes even in patients with good initial radiographic response, and faster acquisition of T790M and other resistance mechanisms. TP53-mutated tumors had higher mutational burdens and increased mutagenesis with exposure to therapy and tobacco. Cell cycle alterations were not independently predictive, but portended worse OS in conjunction with TP53 alterations. CONCLUSIONS: TP53 alterations associate with faster resistance evolution independent of mechanism in EGFR-mutant NSCLC and may cooperate with other genomic events to mediate acquisition of resistance mutations to EGFR tyrosine kinase inhibitors.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteína p53 Supresora de Tumor , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Factor 2 Relacionado con NF-E2/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos , Proteína p53 Supresora de Tumor/genética
6.
Dis Model Mech ; 15(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142349

RESUMEN

Endogenous retroviruses (ERVs) are fossils left in our genome from retrovirus infections of the past. Their sequences are part of every vertebrate genome and their random integrations are thought to have contributed to evolution. Although ERVs are mainly silenced by the host genome, they have been found to be activated in multiple disease states, such as auto-inflammatory disorders and neurological diseases. However, the numerous copies in mammalian genomes and the lack of tools to study them make defining their role in health and diseases challenging. In this study, we identified eight copies of the zebrafish endogenous retrovirus zferv. We created and characterised the first in vivo ERV reporter line in any species. Using a combination of live imaging, flow cytometry and single-cell RNA sequencing, we mapped zferv expression to early T cells and neurons. Thus, this new tool identified tissues expressing ERV in zebrafish, highlighting a potential role of ERV during brain development and strengthening the hypothesis that ERV play a role in immunity and neurological diseases. This transgenic line is therefore a suitable tool to study the function of ERV in health and diseases.


Asunto(s)
Retrovirus Endógenos , Infecciones por Retroviridae , Animales , Animales Modificados Genéticamente , Retrovirus Endógenos/genética , Mamíferos , Neuronas , Infecciones por Retroviridae/genética , Pez Cebra/genética
7.
Cancer Res ; 82(1): 130-141, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34548332

RESUMEN

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are the standard-of-care treatment for EGFR-mutant non-small cell lung cancers (NSCLC). However, most patients develop acquired drug resistance to EGFR TKIs. HER3 is a unique pseudokinase member of the ERBB family that functions by dimerizing with other ERBB family members (EGFR and HER2) and is frequently overexpressed in EGFR-mutant NSCLC. Although EGFR TKI resistance mechanisms do not lead to alterations in HER3, we hypothesized that targeting HER3 might improve efficacy of EGFR TKI. HER3-DXd is an antibody-drug conjugate (ADC) comprised of HER3-targeting antibody linked to a topoisomerase I inhibitor currently in clinical development. In this study, we evaluated the efficacy of HER3-DXd across a series of EGFR inhibitor-resistant, patient-derived xenografts and observed it to be broadly effective in HER3-expressing cancers. We further developed a preclinical strategy to enhance the efficacy of HER3-DXd through osimertinib pretreatment, which increased membrane expression of HER3 and led to enhanced internalization and efficacy of HER3-DXd. The combination of osimertinib and HER3-DXd may be an effective treatment approach and should be evaluated in future clinical trials in EGFR-mutant NSCLC patients. SIGNIFICANCE: EGFR inhibition leads to increased HER3 membrane expression and promotes HER3-DXd ADC internalization and efficacy, supporting the clinical development of the EGFR inhibitor/HER3-DXd combination in EGFR-mutant lung cancer.See related commentary by Lim et al., p. 18.


Asunto(s)
Antineoplásicos/uso terapéutico , Receptores ErbB/antagonistas & inhibidores , Inmunoconjugados/metabolismo , Receptor ErbB-3/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Ratones
8.
Sci Transl Med ; 13(609): eabb3738, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34516823

RESUMEN

The clinical efficacy of epidermal growth factor receptor (EGFR)­targeted therapy in EGFR-mutant non­small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor (MET) proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent EGFR mutation and MET amplification are historically thought to be codependent on the activation of both oncogenes. Hence, patients whose tumors harbor both alterations are commonly treated with a combination of EGFR and MET tyrosine kinase inhibitors (TKIs). Here, we identify and characterize six patient-derived models of EGFR-mutant, MET-amplified lung cancer that have switched oncogene dependence to rely exclusively on MET activation for survival. We demonstrate in this MET-driven subset of EGFR TKI-refractory cancers that canonical EGFR downstream signaling was governed by MET, even in the presence of sustained mutant EGFR expression and activation. In these models, combined EGFR and MET inhibition did not result in greater efficacy in vitro or in vivo compared to single-agent MET inhibition. We further identified a reduced EGFR:MET mRNA expression stoichiometry as associated with MET oncogene dependence and single-agent MET TKI sensitivity. Tumors from 10 of 11 EGFR inhibitor­resistant EGFR-mutant, MET-amplified patients also exhibited a reduced EGFR:MET mRNA ratio. Our findings reveal that a subset of EGFR-mutant, MET-amplified lung cancers develop dependence on MET activation alone, suggesting that such patients could be treated with a single-agent MET TKI rather than the current standard-of-care EGFR and MET inhibitor combination regimens.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
Gene ; 799: 145824, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34252531

RESUMEN

The SLC39A12 gene encodes the zinc transporter protein ZIP12, which is expressed across many tissues and is highly abundant in the vertebrate nervous system. As a zinc transporter, ZIP12 functions to transport zinc across cellular membranes, including cellular zinc influx across the plasma membrane. Genome-wide association and exome sequencing studies have shown that brain susceptibility-weighted magnetic resonance imaging (MRI) intensity is associated with ZIP12 polymorphisms and rare mutations. ZIP12 is required for neural tube closure and embryonic development in Xenopus tropicalis. Frog embryos depleted of ZIP12 by antisense morpholinos develop an anterior neural tube defect and lack viability. ZIP12 is also necessary for neurite outgrowth and mitochondrial function in mouse neural cells. ZIP12 mRNA is increased in brain regions of schizophrenic patients. Outside of the nervous system, hypoxia induces ZIP12 expression in multiple mammalian species, including humans, which leads to endothelial and smooth muscle thickening in the lung and contributes towards pulmonary hypertension. Other studies have associated ZIP12 with other diseases such as cancer. Given that ZIP12 is highly expressed in the brain and that susceptibility-weighted MRI is associated with brain metal content, ZIP12 may affect neurological diseases and psychiatric illnesses such as Parkinson's disease, Alzheimer's disease, and schizophrenia. Furthermore, the induction of ZIP12 and resultant zinc uptake under pathophysiological conditions may be a critical component of disease pathology, such as in pulmonary hypertension. Drug compounds that bind metals like zinc may be able to treat diseases associated with impaired zinc homeostasis and altered ZIP12 function.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Proteínas de Xenopus/fisiología , Zinc/metabolismo , Animales , Trastorno Autístico/metabolismo , Bancos de Muestras Biológicas , Regulación del Desarrollo de la Expresión Génica , Humanos , Pulmón/fisiopatología , Familia de Multigenes , Enfermedades Neurodegenerativas/etiología , Estrés Oxidativo/fisiología , Reino Unido , Vertebrados/genética
10.
Front Genet ; 12: 647946, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790950

RESUMEN

The SLC39A8 gene encodes a divalent metal transporter, ZIP8. SLC39A8 is associated with pleiotropic effects across multiple tissues, including the brain. We determine the different brain magnetic resonance imaging (MRI) phenotypes associated with SLC39A8. We used a phenome-wide association study approach followed by joint and conditional association analysis. Using the summary statistics datasets from a brain MRI genome-wide association study on adult United Kingdom (UK) Biobank participants, we systematically selected all brain MRI phenotypes associated with single-nucleotide polymorphisms (SNPs) within 500 kb of the SLC39A8 genetic locus. For all significant brain MRI phenotypes, we used GCTA-COJO to determine the number of independent association signals and identify index SNPs for each brain MRI phenotype. Linkage equilibrium for brain phenotypes with multiple independent signals was confirmed by LDpair. We identified 24 brain MRI phenotypes that vary due to MRI type and brain region and contain a SNP associated with the SLC39A8 locus. Missense ZIP8 polymorphism rs13107325 was associated with 22 brain MRI phenotypes. Rare ZIP8 variants present in a published UK Biobank dataset are associated with 6 brain MRI phenotypes also linked to rs13107325. Among the 24 datasets, an additional 4 association signals were identified by GCTA-COJO and confirmed to be in linkage equilibrium with rs13107325 using LDpair. These additional association signals represent new probable causative SNPs in addition to rs13107325. This study provides leads into how genetic variation in SLC39A8, a trace mineral transport gene, is linked to brain structure differences and may affect brain development and nervous system function.

11.
Mol Cancer Ther ; 20(4): 641-654, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33536188

RESUMEN

RAS gene mutations are the most frequent oncogenic event in lung cancer. They activate multiple RAS-centric signaling networks among them the MAPK, PI3K, and RB pathways. Within the MAPK pathway, ERK1/2 proteins exert a bottleneck function for transmitting mitogenic signals and activating cytoplasmic and nuclear targets. In view of disappointing antitumor activity and toxicity of continuously applied MEK inhibitors in patients with KRAS-mutant lung cancer, research has recently focused on ERK1/2 proteins as therapeutic targets and on ERK inhibitors for their ability to prevent bypass and feedback pathway activation. Here, we show that intermittent application of the novel and selective ATP-competitive ERK1/2 inhibitor LY3214996 exerts single-agent activity in patient-derived xenograft (PDX) models of RAS-mutant lung cancer. Combination treatments were well tolerated and resulted in synergistic (ERKi plus PI3K/mTORi LY3023414) and additive (ERKi plus CDK4/6i abemaciclib) tumor growth inhibition in PDX models. Future clinical trials are required to investigate if intermittent ERK inhibitor-based treatment schedules can overcome toxicities observed with continuous MEK inhibition and-equally important-to identify biomarkers for patient stratification.


Asunto(s)
Genes ras/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Oncogenes/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología
12.
Mol Oncol ; 15(1): 27-42, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191822

RESUMEN

Small-cell lung cancer (SCLC) occurs infrequently in never/former light smokers. We sought to study this rare clinical subset through next-generation sequencing (NGS) and by characterizing a representative patient-derived model. We performed targeted NGS, as well as comprehensive pathological evaluation, in 11 never/former light smokers with clinically diagnosed SCLC. We established a patient-derived model from one such patient (DFCI168) harboring an NRASQ61K mutation and characterized the sensitivity of this model to MEK and TORC1/2 inhibitors. Despite the clinical diagnosis of SCLC, the majority (8/11) of cases were either of nonpulmonary origin or of mixed histology and included atypical carcinoid (n = 1), mixed non-small-cell lung carcinoma and SCLC (n = 4), unspecified poorly differentiated carcinoma (n = 1), or small-cell carcinoma from different origins (n = 2). RB1 and TP53 mutations were found in four and five cases, respectively. Predicted driver mutations were detected in EGFR (n = 2), NRAS (n = 1), KRAS (n = 1), BRCA1 (n = 1), and ATM (n = 1), and one case harbored a TMPRSS2-ERG fusion. DFCI168 (NRASQ61K ) exhibited marked sensitivity to MEK inhibitors in vitro and in vivo. The combination of MEK and mTORC1/2 inhibitors synergized to prevent compensatory mTOR activation, resulting in prolonged growth inhibition in this model and in three other NRAS mutant lung cancer cell lines. SCLC in never/former light smokers is rare and is potentially a distinct disease entity comprised of oncogenic driver mutation-harboring carcinomas morphologically and/or clinically mimicking SCLC. Comprehensive pathologic review integrated with genomic profiling is critical in refining the diagnosis and in identifying potential therapeutic options.


Asunto(s)
Heterogeneidad Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Fumadores , Anciano , Animales , Secuencia de Bases , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , GTP Fosfohidrolasas/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas de la Membrana/genética , Ratones , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Mutación/genética , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/patología , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico
13.
Nat Commun ; 11(1): 4296, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855387

RESUMEN

Assays to study cancer cell responses to pharmacologic or genetic perturbations are typically restricted to using simple phenotypic readouts such as proliferation rate. Information-rich assays, such as gene-expression profiling, have generally not permitted efficient profiling of a given perturbation across multiple cellular contexts. Here, we develop MIX-Seq, a method for multiplexed transcriptional profiling of post-perturbation responses across a mixture of samples with single-cell resolution, using SNP-based computational demultiplexing of single-cell RNA-sequencing data. We show that MIX-Seq can be used to profile responses to chemical or genetic perturbations across pools of 100 or more cancer cell lines. We combine it with Cell Hashing to further multiplex additional experimental conditions, such as post-treatment time points or drug doses. Analyzing the high-content readout of scRNA-seq reveals both shared and context-specific transcriptional response components that can identify drug mechanism of action and enable prediction of long-term cell viability from short-term transcriptional responses to treatment.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Análisis de la Célula Individual/métodos , Antineoplásicos/farmacología , Secuencia de Bases , Línea Celular Tumoral , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Estadísticos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Piridonas/farmacología , Pirimidinonas/farmacología
14.
Clin Cancer Res ; 26(15): 4072-4079, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32312893

RESUMEN

PURPOSE: We pursued genomic analysis of an exceptional responder with non-small cell lung cancer (NSCLC) through a multi-platform effort to discover novel oncogenic targets. EXPERIMENTAL DESIGN: In this open-label, single-arm phase II study (NCT01829217), an enriched cohort of patients with advanced NSCLC was treated with the multi-kinase inhibitor sunitinib. The primary endpoint was objective response rate. Tissue was collected for multi-platform genomic analysis of responders, and a candidate oncogene was validated using in vitro models edited by CRISPR-Cas9. RESULTS: Of 13 patients enrolled, 1 patient (8%), a never smoker, had a partial response lasting 33 months. Genomic analysis of the responder identified no oncogenic variant using multi-platform DNA analysis including hotspot allelotyping, massively parallel hybrid-capture next-generation sequencing, and whole-exome sequencing. However, bulk RNA-sequencing (RNA-seq) revealed a novel fusion, TMEM87A-RASGRF1, with high overexpression of the fusion partners. RASGRF1 encodes a guanine exchange factor which activates RAS from GDP-RAS to GTP-RAS. Oncogenicity was demonstrated in NIH/3T3 models with intrinsic TMEM87A-RASGRF1 fusion. In addition, activation of MAPK was shown in PC9 models edited to express this fusion, although sensitivity to MAPK inhibition was seen without apparent sensitivity to sunitinib. CONCLUSIONS: Sunitinib exhibited limited activity in this enriched cohort of patients with advanced NSCLC. Nonetheless, we find that RNA-seq of exceptional responders represents a potentially underutilized opportunity to identify novel oncogenic targets including oncogenic activation of RASGRF1.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas de la Membrana/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Sunitinib/farmacología , ras-GRF1/metabolismo , Anciano , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas/genética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética , RNA-Seq , Sunitinib/uso terapéutico , Proteínas ras/genética , ras-GRF1/genética
15.
Cancer Cell ; 37(5): 705-719.e6, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32243838

RESUMEN

While KRAS mutations are common in non-small cell lung cancer (NSCLC), effective treatments are lacking. Here, we report that half of KRAS-mutant NSCLCs aberrantly express the homeobox protein HOXC10, largely due to unappreciated defects in PRC2, which confers sensitivity to combined BET/MEK inhibitors in xenograft and PDX models. Efficacy of the combination is dependent on suppression of HOXC10 by BET inhibitors. We further show that HOXC10 regulates the expression of pre-replication complex (pre-RC) proteins in sensitive tumors. Accordingly, BET/MEK inhibitors suppress pre-RC proteins in cycling cells, triggering stalled replication, DNA damage, and death. These studies reveal a promising therapeutic strategy for KRAS-mutant NSCLCs, identify a predictive biomarker of response, and define a subset of NSCLCs with a targetable epigenetic vulnerability.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Epigénesis Genética , Proteínas de Homeodominio/metabolismo , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Acrilonitrilo/análogos & derivados , Acrilonitrilo/farmacología , Compuestos de Anilina/farmacología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas/antagonistas & inhibidores , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Clin Cancer Res ; 26(10): 2393-2403, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32034078

RESUMEN

PURPOSE: Evaluating drug responses using primary patient-derived cells ex vivo represents a potentially rapid and efficient approach to screening for new treatment approaches. Here, we sought to identify neratinib combinations in HER2 mutant non-small cell lung cancer (NSCLC) patient xenograft-derived organotypic spheroids (XDOTS) using a short-term ex vivo system. EXPERIMENTAL DESIGN: We generated two HER2-mutant NSCLC PDX models [DFCI359 (HER2 exon19 755_757LREdelinsRP) and DFCI315 (HER2 exon20 V777_G778insGSP)] and used the PDX tumors to generate XDOTS. Tumor spheroids were grown in a microfluidic device and treated ex vivo with neratinib-based drug combinations. Live/dead quantification was performed by dual-labeling deconvolution fluorescence microscopy. The most efficacious ex vivo combination was subsequently validated in vivo using the DFCI359 and DFCI315 PDXs and a HER2 YVMA genetically engineered mouse model. RESULTS: Both neratinib and afatinib, but not gefitinib, induced cell death in DFCI359 XDOTS. The combinations of neratinib/trastuzumab and neratinib/temsirolimus enhanced the therapeutic benefit of neratinib alone in DFCI315 and DFCI359. The combination of neratinib and trastuzumab in vivo was more effective compared with single-agent neratinib or trastuzumab and was associated with more robust inhibition of HER2 and downstream signaling. CONCLUSIONS: The XDOTS platform can be used to evaluate therapies and therapeutic combinations ex vivo using PDX tumors. This approach may accelerate the identification and clinical development of therapies for targets with no or few existing models and/or therapies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Receptor ErbB-2/genética , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Quinolinas/administración & dosificación , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Esferoides Celulares , Trastuzumab/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Clin Cancer Res ; 24(23): 5963-5976, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30072474

RESUMEN

PURPOSE: MET inhibitors can be effective therapies in patients with MET exon 14 (METex14) mutant non-small cell lung cancer (NSCLC). However, long-term efficacy is limited by the development of drug resistance. In this study, we characterize acquired amplification of wild-type (WT) KRAS as a molecular mechanism behind crizotinib resistance in three cases of METex14-mutant NSCLC and propose a combination therapy to target it. EXPERIMENTAL DESIGN: The patient-derived cell line and xenograft (PDX) DFCI358 were established from a crizotinib-resistant METex14-mutant patient tumor with massive focal amplification of WT KRAS. To characterize the mechanism of KRAS-mediated resistance, molecular signaling was analyzed in the parental cell line and its KRAS siRNA-transfected derivative. Sensitivity of the cell line to ligand stimulation was assessed and KRAS-dependent expression of EGFR ligands was quantified. Drug combinations were screened for efficacy in vivo and in vitro using viability and apoptotic assays. RESULTS: KRAS amplification is a recurrent genetic event in crizotinib-resistant METex14-mutant NSCLC. The key characteristics of this genetic signature include uncoupling MET from downstream effectors, relative insensitivity to dual MET/MEK inhibition due to compensatory induction of PI3K signaling, KRAS-induced expression of EGFR ligands and hypersensitivity to ligand-dependent and independent activation, and reliance on PI3K signaling upon MET inhibition. CONCLUSIONS: Using patient-derived cell line and xenografts, we characterize the mechanism of crizotinib resistance mediated by KRAS amplification in METex14-mutant NSCLC and demonstrate the superior efficacy of the dual MET/PI3K inhibition as a therapeutic strategy addressing this resistance mechanism.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/genética , Exones , Amplificación de Genes , Neoplasias Pulmonares/genética , Mutación , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Crizotinib/farmacología , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/genética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Lung Cancer ; 122: 72-75, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30032849

RESUMEN

BACKGROUND: Tumor genotyping is transforming lung cancer care but requires adequate tumor tissue. Advances in minimally invasive biopsy techniques have increased access to difficult-to-access lesions, but often result in smaller samples. With the advent of highly sensitive DNA genotyping methods used for plasma analysis, we hypothesized that these same methods might allow genotyping of free DNA derived from fine needle aspiration supernatant (FNA-S). METHODS: We studied patients with known or suspected lung cancer undergoing fine needle aspirate (FNA). After spinning the sample for cellblock, the FNA-S (usually discarded) was saved for genotyping. Supernatant cell-free DNA (SN-cfDNA) was extracted and tested by both droplet digital PCR (EGFR, BRAF, KRAS mutations) and highly sensitive amplicon-based next-generation sequencing (NGS). RESULTS: 17 samples were studied, including 11 FNAs from patients with suspected lung cancer and 6 FNAs from patients with lung cancer and acquired drug resistance. Of 6 newly diagnosed adenocarcinomas, 4 had a driver mutations (1 EGFR, 2 KRAS, 1 HER2) found on tissue; all of these could be detected in SN-cfDNA. The EGFR driver mutation was detected in all 5 adenocarcinomas with acquired EGFR resistance and the EGFR T790 M in three cases, in agreement with cellblock. CONCLUSIONS: FNA-S is a rich source of fresh tumor DNA, potentially increasing the diagnostic yield from small FNAs. Through use of emerging techniques for highly sensitive genotyping, this widely available biospecimen has potential for facilitating rapid cancer genotyping at diagnosis and after drug resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Ácidos Nucleicos Libres de Células/genética , Genotipo , Biopsia Líquida/métodos , Neoplasias Pulmonares/diagnóstico , Biopsia con Aguja Fina , Carcinoma de Pulmón de Células no Pequeñas/genética , Análisis Mutacional de ADN , Receptores ErbB/genética , Técnicas de Genotipaje , Humanos , Neoplasias Pulmonares/genética
19.
J Immunother Cancer ; 4: 84, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018599

RESUMEN

BACKGROUND: Tumor response characteristics using immune-related RECIST1.1 (irRECIST1.1) in advanced non-small-cell lung cancer (NSCLC) patients treated with nivolumab monotherapy in the clinical setting have not been previously described with a direct comparison with the assessments according to the conventional RECIST1.1. METHODS: Fifty-six advanced NSCLC patients treated with nivolumab monotherapy after its Food and Drug Administration (FDA) approval were retrospectively studied. Tumor burden was quantified on serial CT scans during therapy using irRECIST1.1, which uses unidimensional measurements and includes new lesion measurements in total tumor burden. Response assessments by irRECIST1.1 were compared with assessments by RECIST1.1. Responses of individual lesions in different organs were also compared. RESULTS: Tumor burden change at best overall response ranged from -66.8 to +278.1% (median: +3.9%). Response rate was 14% (8/56; 8 partial responses, 0 complete responses) by irRECIST1.1 and by RECIST1.1. Time-to-progression (TTP) by irRECIST1.1 was longer than TTP by RECIST1.1 (median TTP: not reached vs. 1.9 months, respectively). No patients experienced pseudoprogression during the study. Among 128 target lesions, the lesion-based size change at best response differed significantly across different organs, with adrenal lesions and lymph nodes having greater size decrease, followed by lung, while liver and other miscellaneous lesions had lesser degree of size decrease (p = 0.002). CONCLUSIONS: Immune-related response evaluations using irRECIST1.1 in advanced NSCLC patients treated with nivolumab resulted in the identical response rate and longer TTP compared to RECIST1.1. No pseudoprogression cases were observed during the study. Adrenal lesions and lymph nodes were more responsive and liver lesions were less responsive to nivolumab.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...