Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 12(6): e12327, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272197

RESUMEN

Purifying extracellular vesicles (EVs) has been challenging because EVs are heterogeneous in cargo yet share similar sizes and densities. Most surface marker-based affinity separation methods are limited to research or diagnostic scales. We report that heparin chromatography can separate purified EVs into two distinct subpopulations as ascertained by MS/MS: a non-heparin-binding (NHB) fraction that contains classical EV markers such as tetraspanins and a heparin-binding (HB) fraction enriched in fibronectins and histones. Both fractions were similarly fusogenic but induced different transcriptional responses in endothelial cells. While EVs that were purified by conventional, non-affinity methods alone induced ERK1/2 phosphorylation and Ki67, the NHB fraction did not. This result suggests heparin chromatography as an additional novel fractionation step that is inherently scalable, does not lead to loss of material, and separates inflammatory and pyrogenic EVs from unreactive EVs, which will improve clinical applications.


Asunto(s)
Vesículas Extracelulares , Heparina , Heparina/farmacología , Heparina/análisis , Heparina/química , Espectrometría de Masas en Tándem , Células Endoteliales , Vesículas Extracelulares/química , Cromatografía de Afinidad/métodos
2.
J Extracell Vesicles ; 11(3): e12191, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35234354

RESUMEN

Extracellular vesicles (EVs) are secreted from all cell types and are intimately involved in tissue homeostasis. They are being explored as vaccine and gene therapy platforms, as well as potential biomarkers. As their size is below the diffraction limit of light microscopy, direct visualizations have been daunting and single-particle studies under physiological conditions have been hampered. Here, direct stochastic optical reconstruction microscopy (dSTORM) was employed to visualize EVs in three-dimensions and to localize molecule clusters such as the tetraspanins CD81 and CD9 on the surface of individual EVs. These studies demonstrate the existence of membrane microdomains on EVs. These were confirmed by Cryo-EM. Individual particle visualization provided insights into the heterogeneity, structure, and complexity of EVs not previously appreciated.


Asunto(s)
Vesículas Extracelulares , Transporte Biológico , Biomarcadores/análisis , Vesículas Extracelulares/química , Microscopía , Tetraspaninas/análisis
3.
J Vis Exp ; (174)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34515687

RESUMEN

Extracellular vesicles (EVs) are released by all cell types and play an important role in cell signaling and homeostasis. The visualization of EVs often require indirect methods due to their small diameter (40-250 nm), which is beneath the diffraction limit of typical light microscopy. We have developed a super-resolution microscopy-based visualization of EVs to bypass the diffraction limit in both two and three dimensions. Using this approach, we can resolve the three-dimensional shape of EVs to within +/- 20 nm resolution on the XY-axis and +/- 50 nm resolution along the Z-axis. In conclusion, we propose that super-resolution microscopy be considered as a characterization method of EVs, including exosomes, as well as enveloped viruses.


Asunto(s)
Exosomas , Vesículas Extracelulares , Microscopía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...