Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 36(2): 324-345, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37804091

RESUMEN

Floral homeotic MADS-box transcription factors ensure the correct morphogenesis of floral organs, which are organized in different cell layers deriving from distinct meristematic layers. How cells from these distinct layers acquire their respective identities and coordinate their growth to ensure normal floral organ morphogenesis is unresolved. Here, we studied petunia (Petunia × hybrida) petals that form a limb and tube through congenital fusion. We identified petunia mutants (periclinal chimeras) expressing the B-class MADS-box gene DEFICIENS in the petal epidermis or in the petal mesophyll, called wico and star, respectively. Strikingly, wico flowers form a strongly reduced tube while their limbs are almost normal, while star flowers form a normal tube but greatly reduced and unpigmented limbs, showing that petunia petal morphogenesis is highly modular. These mutants highlight the layer-specific roles of PhDEF during petal development. We explored the link between PhDEF and petal pigmentation, a well-characterized limb epidermal trait. The anthocyanin biosynthesis pathway was strongly downregulated in star petals, including its major regulator ANTHOCYANIN2 (AN2). We established that PhDEF directly binds to the AN2 terminator in vitro and in vivo, suggesting that PhDEF might regulate AN2 expression and therefore petal epidermis pigmentation. Altogether, we show that cell layer-specific homeotic activity in petunia petals differently impacts tube and limb development, revealing the relative importance of the different cell layers in the modular architecture of petunia petals.


Asunto(s)
Petunia , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica , Flores/fisiología , Morfogénesis/genética , Regulación de la Expresión Génica de las Plantas/genética
2.
Commun Biol ; 3(1): 239, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415243

RESUMEN

In cucurbits, CmWIP1 is a master gene controlling sex determination. To bring new insight in the function of CmWIP1, we investigated two Arabidopsis WIP transcription factors, AtWIP1/TT1 and AtWIP2/NTT. Using an inducible system we showed that WIPs are powerful inhibitor of growth and inducer of cell death. Using ChIP-seq and RNA-seq we revealed that most of the up-regulated genes bound by WIPs display a W-box motif, associated with stress signaling. In contrast, the down-regulated genes contain a GAGA motif, a known target of polycomb repressive complex. To validate the role of WIP proteins in inhibition of growth, we expressed AtWIP1/TT1 in carpel primordia and obtained male flowers, mimicking CmWIP1 function in melon. Using other promoters, we further demonstrated that WIPs can trigger growth arrest of both vegetative and reproductive organs. Our data supports an evolutionary conserved role of WIPs in recruiting gene networks controlling growth and adaptation to stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intracelular/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción/metabolismo
3.
Plant Cell ; 31(12): 3033-3056, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591161

RESUMEN

Members of SEPALLATA (SEP) and APETALA1 (AP1)/SQUAMOSA (SQUA) MADS-box transcription factor subfamilies play key roles in floral organ identity determination and floral meristem determinacy in the rosid species Arabidopsis (Arabidopsis thaliana). Here, we present a functional characterization of the seven SEP/AGL6 and four AP1/SQUA genes in the distant asterid species petunia (Petunia × hybrida). Based on the analysis of single and higher order mutants, we report that the petunia SEP1/SEP2/SEP3 orthologs together with AGL6 encode classical SEP floral organ identity and floral termination functions, with a master role for the petunia SEP3 ortholog FLORAL BINDING PROTEIN2 (FBP2). By contrast, the FBP9 subclade members FBP9 and FBP23, for which no clear ortholog is present in Arabidopsis, play a major role in determining floral meristem identity together with FBP4, while contributing only moderately to floral organ identity. In turn, the four members of the petunia AP1/SQUA subfamily redundantly are required for inflorescence meristem identity and act as B-function repressors in the first floral whorl, together with BEN/ROB genes. Overall, these data together with studies in other species suggest major differences in the functional diversification of the SEP/AGL6 and AP1/SQUA MADS-box subfamilies during angiosperm evolution.plantcell;31/12/3033/FX1F1fx1.


Asunto(s)
Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/genética , Proteínas Circadianas Period/genética , Petunia/genética , Arabidopsis/metabolismo , Flores/ultraestructura , Proteínas de Dominio MADS/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Meristema/genética , Meristema/metabolismo , Mutación , Proteínas Circadianas Period/metabolismo , Petunia/metabolismo , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
PLoS Genet ; 15(1): e1007899, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30695029

RESUMEN

Translationally Controlled Tumor Protein (TCTP) controls growth by regulating the G1/S transition during cell cycle progression. Our genetic interaction studies show that TCTP fulfills this role by interacting with CSN4, a subunit of the COP9 Signalosome complex, known to influence CULLIN-RING ubiquitin ligases activity by controlling CULLIN (CUL) neddylation status. In agreement with these data, downregulation of CSN4 in Arabidopsis and in tobacco cells leads to delayed G1/S transition comparable to that observed when TCTP is downregulated. Loss-of-function of AtTCTP leads to increased fraction of deneddylated CUL1, suggesting that AtTCTP interferes negatively with COP9 function. Similar defects in cell proliferation and CUL1 neddylation status were observed in Drosophila knockdown for dCSN4 or dTCTP, respectively, demonstrating a conserved mechanism between plants and animals. Together, our data show that CSN4 is the missing factor linking TCTP to the control of cell cycle progression and cell proliferation during organ development and open perspectives towards understanding TCTP's role in organ development and disorders associated with TCTP miss-expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Arabidopsis/genética , Complejo del Señalosoma COP9/genética , Proteínas Cullin/genética , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Puntos de Control del Ciclo Celular/genética , División Celular/genética , Proliferación Celular/genética , Drosophila/genética , Nicotiana/genética , Ubiquitina
5.
Plant Cell ; 30(9): 2020-2037, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30087206

RESUMEN

To attract insects, flowers produce nectar, an energy-rich substance secreted by specialized organs called nectaries. For Arabidopsis thaliana, a rosid species with stamen-associated nectaries, the floral B-, C-, and E-functions were proposed to redundantly regulate nectary development. Here, we investigated the molecular basis of carpel-associated nectary development in the asterid species petunia (Petunia hybrida). We show that its euAGAMOUS (euAG) and PLENA (PLE) C-lineage MADS box proteins are essential for nectary development, while their overexpression is sufficient to induce ectopic nectaries on sepals. Furthermore, we demonstrate that Arabidopsis nectary development also fully depends on euAG/PLE C-lineage genes. In turn, we show that petunia nectary development depends on two homologs of CRABS CLAW (CRC), a gene previously shown to be required for Arabidopsis nectary development, and demonstrate that CRC expression in both species depends on the members of both euAG/PLE C-sublineages. Therefore, petunia and Arabidopsis employ a similar molecular mechanism underlying nectary development, despite otherwise major differences in the evolutionary trajectory of their C-lineage genes, their distant phylogeny, and different nectary positioning. However, unlike in Arabidopsis, petunia nectary development is position independent within the flower. Finally, we show that the TARGET OF EAT-type BLIND ENHANCER and APETALA2-type REPRESSOR OF B-FUNCTION genes act as major regulators of nectary size.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Petunia/crecimiento & desarrollo , Petunia/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Petunia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Cell ; 29(7): 1605-1621, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28646074

RESUMEN

The ABC model is widely used as a genetic framework for understanding floral development and evolution. In this model, the A-function is required for the development of sepals and petals and to antagonize the C-function in the outer floral whorls. In the rosid species Arabidopsis thaliana, the AP2-type AP2 transcription factor represents a major A-function protein, but how the A-function is encoded in other species is not well understood. Here, we show that in the asterid species petunia (Petunia hybrida), AP2B/BLIND ENHANCER (BEN) confines the C-function to the inner petunia floral whorls, in parallel with the microRNA BLINDBEN belongs to the TOE-type AP2 gene family, members of which control flowering time in Arabidopsis. In turn, we demonstrate that the petunia AP2-type REPRESSOR OF B-FUNCTION (ROB) genes repress the B-function (but not the C-function) in the first floral whorl, together with BEN We propose a combinatorial model for patterning the B- and C-functions, leading to the homeotic conversion of sepals into petals, carpels, or stamens, depending on the genetic context. Combined with earlier results, our findings suggest that the molecular mechanisms controlling the spatial restriction of the floral organ identity genes are more diverse than the well-conserved B and C floral organ identity functions.


Asunto(s)
Arabidopsis/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Petunia/fisiología , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genoma de Planta , Proteínas de Homeodominio/genética , Mutación , Proteínas Nucleares/genética , Petunia/genética , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Ann Bot ; 117(5): 905-23, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27098089

RESUMEN

BACKGROUND AND AIMS: SUPERMAN is a cadastral gene controlling the sexual boundary in the flower. The gene's functions and role in flower development and evolution have remained elusive. The analysis of a contrasting SUP allelic series (for which the names superman, superwoman and supersex have been coined) makes it possible to distinguish early vs. late regulatory processes at the flower meristem centre to which SUP is an important contributor. Their understanding is essential in further addressing evolutionary questions linking bisexuality and flower meristem homeostasis. METHODS: Inter-allelic comparisons were carried out and SUP interactions with other boundary factors and flower meristem patterning and homeostasis regulators (such as CLV, WUS, PAN, CUC, KNU, AG, AP3/PI, CRC and SPT) have been evaluated at genetic, molecular, morphological and histological levels. KEY RESULTS: Early SUP functions include mechanisms of male-female (sexual) boundary specification, flower mersitem termination and control of stamen number. A SUP-dependent flower meristem termination pathway is identified and analysed. Late SUP functions play a role in organ morphogenesis by controlling intra-whorl organ separation and carpel medial region formation. By integrating early and late SUP functions, and by analyzing in one single experiment a series of SUP genetic interactions, the concept of meristematic 'transference' (cascade) - a regulatory bridging process redundantly and sequentially co-ordinating the triggering and completion of flower meristem termination, and carpel margin meristem and placenta patterning - is proposed. CONCLUSIONS: Taken together, the results strongly support the view that SUP(-type) function(s) have been instrumental in resolving male/female gradients into sharp male and female identities (whorls, organs) and in enforcing flower homeostasis during evolution. This has probably been achieved by incorporating the meristem patterning system of the floral axis into the female/carpel programme.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Factores de Transcripción/genética , Alelos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Cruzamientos Genéticos , Proteínas de Unión al ADN/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Meristema/genética , Mutación , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo
8.
J Exp Bot ; 67(9): 2549-63, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27006484

RESUMEN

We provide an overview of methods and workflows that can be used to investigate the topologies of Gene Regulatory Networks (GRNs) in the context of plant evolutionary-developmental (evo-devo) biology. Many of the species that occupy key positions in plant phylogeny are poorly adapted as laboratory models and so we focus here on techniques that can be efficiently applied to both model and non-model species of interest to plant evo-devo. We outline methods that can be used to describe gene expression patterns and also to elucidate the transcriptional, post-transcriptional, and epigenetic regulatory mechanisms underlying these patterns, in any plant species with a sequenced genome. We furthermore describe how the technique of Protein Resurrection can be used to confirm inferences on ancestral GRNs and also to provide otherwise-inaccessible points of reference in evolutionary histories by exploiting paralogues generated in gene and whole genome duplication events. Finally, we argue for the better integration of molecular data with information from paleobotanical, paleoecological, and paleogeographical studies to provide the fullest possible picture of the processes that have shaped the evolution of plant development.


Asunto(s)
Redes Reguladoras de Genes/fisiología , Desarrollo de la Planta/genética , Evolución Biológica , Redes Reguladoras de Genes/genética , Plantas/genética
9.
Front Plant Sci ; 7: 72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26870078

RESUMEN

Plant biology in general, and plant evo-devo in particular would strongly benefit from a broader range of available model systems. In recent years, technological advances have facilitated the analysis and comparison of individual gene functions in multiple species, representing now a fairly wide taxonomic range of the plant kingdom. Because genes are embedded in gene networks, studying evolution of gene function ultimately should be put in the context of studying the evolution of entire gene networks, since changes in the function of a single gene will normally go together with further changes in its network environment. For this reason, plant comparative biology/evo-devo will require the availability of a defined set of 'super' models occupying key taxonomic positions, in which performing gene functional analysis and testing genetic interactions ideally is as straightforward as, e.g., in Arabidopsis. Here we review why petunia has the potential to become one of these future supermodels, as a representative of the Asterid clade. We will first detail its intrinsic qualities as a model system. Next, we highlight how the revolution in sequencing technologies will now finally allows exploitation of the petunia system to its full potential, despite that petunia has already a long history as a model in plant molecular biology and genetics. We conclude with a series of arguments in favor of a more diversified multi-model approach in plant biology, and we point out where the petunia model system may further play a role, based on its biological features and molecular toolkit.

10.
Plant J ; 81(5): 747-58, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25619590

RESUMEN

Small non-coding RNAs are versatile riboregulators that control gene expression at the transcriptional or post-transcriptional level, governing many facets of plant development. Here we present evidence for the existence of a 24 nt small RNA (named small1) that is complementary to the 3' UTR of OCL1 (Outer Cell Layer1), the founding member of the maize HD-ZIP IV gene family encoding plant-specific transcription factors that are mainly involved in epidermis differentiation and specialization. The biogenesis of small1 depends on DICER-like 3 (DCL3), RNA-dependent RNA polymerase 2 (RDR2) and RNA polymerase IV, components that are usually required for RNA-dependent DNA-methylation. Unexpectedly, GFP sensor experiments in transient and stable transformation systems revealed that small1 may regulate its target at the post-transcriptional level, mainly through translational repression. This translational repression is attenuated in an rdr2 mutant background in which small1 does not accumulate. Our experiments further showed the possible involvement of a secondary stem-loop structure present in the 3' UTR of OCL1 for efficient target repression, suggesting the existence of several regulatory mechanisms affecting OCL1 mRNA stability and translation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/genética , Proteínas de Plantas/genética , ARN Polimerasa Dependiente del ARN/genética , Factores de Transcripción/genética , Zea mays/genética , Regiones no Traducidas 3'/genética , Metilación de ADN , Genes Reporteros , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN de Planta/genética , ARN Interferente Pequeño
11.
Development ; 141(6): 1222-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24553285

RESUMEN

In Arabidopsis seeds, embryo growth is coordinated with endosperm breakdown. Mutants in the endosperm-specific gene ZHOUPI (ZOU), which encodes a unique basic helix-loop-helix (bHLH) transcription factor, have an abnormal endosperm that persists throughout seed development, significantly impeding embryo growth. Here we show that loss of function of the bHLH-encoding gene INDUCER OF CBP EXPRESSION 1 (ICE1) causes an identical endosperm persistence phenotype. We show that ZOU and ICE1 are co-expressed in the endosperm and interact in yeast via their bHLH domains. We show both genetically and in a heterologous plant system that, despite the fact that both ZOU and ICE1 can form homodimers in yeast, their role in endosperm breakdown requires their heterodimerization. Consistent with this conclusion, we confirm that ZOU and ICE1 regulate the expression of common target genes in the developing endosperm. Finally, we show that heterodimerization of ZOU and ICE1 is likely to be necessary for their binding to specific targets, rather than for their nuclear localization in the endosperm. By comparing our results with paradigms of bHLH function and evolution in animal systems we propose that the ZOU/ICE1 complex might have ancient origins, acquiring novel megagametophyte-specific functions in heterosporous land plants that were conserved in the angiosperm endosperm.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Endospermo/embriología , Endospermo/genética , Endospermo/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hibridación in Situ , Mutación , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
12.
Nature ; 505(7483): 417-21, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24336201

RESUMEN

How biological systems generate reproducible patterns with high precision is a central question in science. The shoot apical meristem (SAM), a specialized tissue producing plant aerial organs, is a developmental system of choice to address this question. Organs are periodically initiated at the SAM at specific spatial positions and this spatiotemporal pattern defines phyllotaxis. Accumulation of the plant hormone auxin triggers organ initiation, whereas auxin depletion around organs generates inhibitory fields that are thought to be sufficient to maintain these patterns and their dynamics. Here we show that another type of hormone-based inhibitory fields, generated directly downstream of auxin by intercellular movement of the cytokinin signalling inhibitor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), is involved in regulating phyllotactic patterns. We demonstrate that AHP6-based fields establish patterns of cytokinin signalling in the meristem that contribute to the robustness of phyllotaxis by imposing a temporal sequence on organ initiation. Our findings indicate that not one but two distinct hormone-based fields may be required for achieving temporal precision during formation of reiterative structures at the SAM, thus indicating an original mechanism for providing robustness to a dynamic developmental system.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico , Citocininas/antagonistas & inhibidores , Transducción de Señal , Arabidopsis/anatomía & histología , Arabidopsis/citología , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Reguladores del Crecimiento de las Plantas/antagonistas & inhibidores , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/metabolismo
13.
J Biol Chem ; 288(13): 8815-25, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23362252

RESUMEN

The retromer complex localizes to endosomal membranes and is involved in protein trafficking. In mammals, it is composed of a dimer of sorting nexins and of the core retromer consisting of vacuolar protein sorting (VPS)26, VPS29, and VPS35. Although homologs of these proteins have been identified in plants, how the plant retromer functions remains elusive. To better understand the role of VPS components in the assembly and function of the core retromer, we characterize here Arabidopsis vps26-null mutants. We show that impaired VPS26 function has a dramatic effect on VPS35 levels and causes severe phenotypic defects similar to those observed in vps29-null mutants. This implies that functions of plant VPS26, VPS29, and VPS35 are tightly linked. Then, by combining live-cell imaging with immunochemical and genetic approaches, we report that VPS35 alone is able to bind to endosomal membranes and plays an essential role in VPS26 and VPS29 membrane recruitment. We also show that the Arabidopsis Rab7 homolog RABG3f participates in the recruitment of the core retromer to the endosomal membrane by interacting with VPS35. Altogether our data provide original information on the molecular interactions that mediate assembly of the core retromer in plants.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Endosomas/metabolismo , Genotipo , Inmunoquímica/métodos , Microscopía Confocal/métodos , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plásmidos/metabolismo , Fracciones Subcelulares/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética
14.
J Exp Bot ; 63(16): 5843-57, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22945943

RESUMEN

The pentatricopeptide repeat (PPR) domain is an RNA binding domain allowing members of the PPR superfamily to participate in post-transcriptional processing of organellar RNA. Loss of PPR8522 from maize (Zea mays) confers an embryo-specific (emb) phenotype. The emb8522 mutation was isolated in an active Mutator (Mu) population and co-segregation analysis revealed that it was tightly linked to a MuDR insertion in the first exon of PPR8522. Independent evidence that disruption of PPR8522 caused the emb phenotype was provided by fine mapping to a region of 116kb containing no other gene than PPR8522 and complementation of the emb8522 mutant by a PPR8522 cDNA. The deduced PPR8522 amino acid sequence of 832 amino acids contains 10 PPR repeats and a chloroplast target peptide, the function of which was experimentally demonstrated by transient expression in Nicotiana benthamiana. Whereas mutant endosperm is apparently normal, mutant embryos deviate from normal development as early as 3 days after pollination, are reduced in size, exhibit more or less severe morphological aberrations depending on the genetic background, and generally do not germinate. The emb8522 mutation is the first to associate the loss of a PPR gene with an embryo-lethal phenotype in maize. Analyses of mutant plantlets generated by embryo-rescue experiments indicate that emb8522 also affects vegetative plant growth and chloroplast development. The loss of chloroplast transcription dependent on plastid-encoded RNA polymerase is the likely cause for the lack of an organized thylakoid network and an albino, seedling-lethal phenotype.


Asunto(s)
Cloroplastos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Secuencia de Aminoácidos , Cloroplastos/química , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia , Zea mays/embriología , Zea mays/genética
15.
Plant Cell ; 24(2): 676-91, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319053

RESUMEN

RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana. Both the maize and the Arabidopsis proteins show preferential localization to mitochondria but are also detected in chloroplasts. In maize, the corresponding ppr2263 mutation causes growth defects in kernels and seedlings. Embryo and endosperm growth are reduced, leading to the production of small but viable kernels. Mutant plants have narrower and shorter leaves, exhibit a strong delay in flowering time, and generally do not reach sexual maturity. Whereas mutant chloroplasts do not have major defects, mutant mitochondria lack complex III and are characterized by a compromised ultrastructure, increased transcript levels, and the induction of alternative oxidase. The results suggest that mitochondrial RNA editing at the cob-908 site is necessary for mitochondrion biogenesis, cell division, and plant growth in maize.


Asunto(s)
Citocromos b/genética , Proteínas Mitocondriales/genética , NADH Deshidrogenasa/genética , Proteínas de Plantas/metabolismo , Edición de ARN , Zea mays/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Cloroplastos/enzimología , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Transmisión , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Oxidorreductasas/metabolismo , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , Semillas/crecimiento & desarrollo , Zea mays/genética , Zea mays/metabolismo
16.
Ann Bot ; 108(4): 589-98, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21486926

RESUMEN

BACKGROUND: The angiosperms, or flowering plants, diversified in the Cretaceous to dominate almost all terrestrial environments. Molecular phylogenetic studies indicate that the orders Amborellales, Nymphaeales and Austrobaileyales, collectively termed the ANA grade, diverged as separate lineages from a remaining angiosperm clade at a very early stage in flowering plant evolution. By comparing these early diverging lineages, it is possible to infer the possible morphology and ecology of the last common ancestor of the extant angiosperms, and this analysis can now be extended to try to deduce the developmental mechanisms that were present in early flowering plants. However, not all species in the ANA grade form convenient molecular-genetic models. SCOPE: The present study reviews the genus Cabomba (Nymphaeales), which shows a range of features that make it potentially useful as a genetic model. We focus on characters that have probably been conserved since the last common ancestor of the extant flowering plants. To facilitate the use of Cabomba as a molecular model, we describe methods for its cultivation to flowering in the laboratory, a novel Cabomba flower expressed sequence tag database, a well-adapted in situ hybridization protocol and a measurement of the nuclear genome size of C. caroliniana. We discuss the features required for species to become tractable models, and discuss the relative merits of Cabomba and other ANA-grade angiosperms in molecular-genetic studies aimed at understanding the origin of the flowering plants.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Nymphaeaceae/genética , Flores/genética , Genoma de Planta/genética , Nymphaeaceae/crecimiento & desarrollo , Nymphaeaceae/ultraestructura , Filogenia
17.
J Exp Bot ; 62(1): 293-305, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20819789

RESUMEN

OCL1 (OUTER CELL LAYER1) encodes a maize HD-ZIP class IV transcription factor (TF) characterized by the presence of a homeo DNA-binding domain (HD), a dimerization leucine zipper domain (ZIP), and a steroidogenic acute regulatory protein (StAR)-related lipid transfer domain (START) involved in lipid transport in animals but the function of which is still unknown in plants. By combining yeast and plant trans-activation assays, the transcriptional activation domain of OCL1 was localized to 85 amino acids in the N-terminal part of the START domain. Full-length OCL1 devoid of this activation domain is unable to trans-activate a reporter gene under the control of a minimal promoter fused to six repeats of the L1 box, a cis-element present in target genes of HD-ZIP IV TFs in Arabidopsis. In addition, ectopic expression of OCL1 leads to pleiotropic phenotypic aberrations in transgenic maize plants, the most conspicuous one being a strong delay in flowering time which is correlated with the misexpression of molecular markers for floral transition such as ZMM4 (Zea Mays MADS-box4) or DLF1 (DELAYED FLOWERING1). As suggested by the interaction in planta between OCL1 and SWI3C1, a bona fide subunit of the SWI/SNF complex, OCL1 may modulate transcriptional activity of its target genes by interaction with a chromatin remodelling complex.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Leucina Zippers , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Estructura Terciaria de Proteína , Activación Transcripcional , Zea mays/química , Zea mays/genética
18.
Proc Natl Acad Sci U S A ; 107(37): 16384-9, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20736351

RESUMEN

The growth of an organism and its size determination require the tight regulation of cell proliferation and cell growth. However, the mechanisms and regulatory networks that control and integrate these processes remain poorly understood. Here, we address the biological role of Arabidopsis translationally controlled tumor protein (AtTCTP) and test its shared functions in animals and plants. The data support a role of plant AtTCTP as a positive regulator of mitotic growth by specifically controlling the duration of the cell cycle. We show that, in contrast to animal TCTP, plant AtTCTP is not implicated in regulating postmitotic growth. Consistent with this finding, plant AtTCTP can fully rescue cell proliferation defects in Drosophila loss of function for dTCTP. Furthermore, Drosophila dTCTP is able to fully rescue cell proliferation defects in Arabidopsis tctp knockouts. Our data provide evidence that TCTP function in regulating cell division is part of a conserved growth regulatory pathway shared between plants and animals. The study also suggests that, although the cell division machinery is shared in all multicellular organisms to control growth, cell expansion can be uncoupled from cell division in plants but not in animals.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Biomarcadores de Tumor/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Mitosis , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Biomarcadores de Tumor/genética , Proliferación Celular , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación de la Expresión Génica , Proteína Tumoral Controlada Traslacionalmente 1
19.
Plant J ; 63(6): 952-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20626651

RESUMEN

Here we analyze the structural evolution of the paralogous transcription factors ETTIN (ETT/ARF3) and AUXIN RESPONSE FACTOR 4 (ARF4), which control the development of floral organs and leaves in the model angiosperm Arabidopsis. ETT is truncated at its C terminus, and consequently lacks two regulatory domains present in most other ARFs, including ARF4. Our analysis indicates ETT and ARF4 to have been generated by the duplication of a non-truncated ARF gene prior to the radiation of the extant angiosperms. We furthermore show that either ETT or ARF4 orthologs have become modified to encode truncated ARF proteins, lacking C-terminal regulatory domains, in representatives of three groups that separated early in angiosperm evolution: Amborellales, Nymphaeales and the remaining angiosperm clade. Interestingly, the production of truncated ARF4 transcripts in Amborellales occurs through an alternative splicing mechanism, rather than through a permanent truncation, as in the other groups studied. To gain insight into the potential functional significance of truncations to ETT and ARF4, we tested the capacity of native, truncated and chimeric coding sequences of these genes to restore a wild-type phenotype to Arabidopsis ett mutants. We discuss the results of this analysis in the context of the structural evolution of ARF genes in the angiosperms.


Asunto(s)
Evolución Molecular , Magnoliopsida/clasificación , Magnoliopsida/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ephedra/genética , Ephedra/metabolismo , Magnoliopsida/genética , Proteínas Nucleares/clasificación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/clasificación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética
20.
Curr Biol ; 18(7): 545-9, 2008 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-18394889

RESUMEN

The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements [5, 7], and lower levels of expression [8] than neoX genes. In the many other taxa with sex chromosomes, Y degeneration has hardly been studied. In plants, many genes are expressed in pollen [9], and strong pollen selection may oppose the degeneration of plant Y chromosomes [10]. Silene latifolia is a dioecious plant with young heteromorphic sex chromosomes [11, 12]. Here we test whether the S. latifolia Y chromosome is undergoing genetic degeneration by analyzing seven sex-linked genes. S. latifolia Y-linked genes tend to evolve faster at the protein level than their X-linked homologs, and they have lower expression levels. Several Y gene introns have increased in length, with evidence for transposable-element accumulation. We detect signs of degeneration in most of the Y-linked gene sequences analyzed, similar to those of animal Y-linked and neo-Y chromosome genes.


Asunto(s)
Cromosomas de las Plantas , Evolución Molecular , Genes de Plantas , Silene/genética , Animales , Elementos Transponibles de ADN , Expresión Génica , Intrones , Cromosoma Y
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA