Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(27): 6622-6637, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38937939

RESUMEN

Extensive research has been carried out to investigate the stability and function of human serum albumin (HSA) when exposed to surface-active ionic liquids (SAILs) with different head groups (imidazolium, morpholinium, and pyridinium) and alkyl chain lengths (ranging from decyl to tetradecyl). Analysis of the protein fluorescence spectra indicates noticeable changes in the secondary structure of HSA with varying concentrations of all SAILs tested. Helicity calculations based on the Fourier transform infrared (FTIR) data show that HSA becomes more organized at the micellar concentration of SAILs, leading to an increased protein activity at this level. Small-angle neutron scattering (SANS) data confirm the formation of a bead-necklace structure between the SAILs and HSA. Atomistic molecular dynamics (MD) simulation results identify several hotspots on the protein surface for interaction with SAIL, which results in the modulation of protein conformational fluctuation and stability. Furthermore, fluorescence resonance energy transfer (FRET) experiments with the intramolecular charge transfer (ICT) probe trans-ethyl p-(dimethylamino) cinnamate (EDAC) demonstrate that higher alkyl chain lengths and SAIL concentrations result in a significantly increased energy transfer efficiency. The findings of this study provide a detailed molecular-level understanding of how the protein structure and function are affected by the presence of SAILs, with potential implications for a wide range of applications involving protein-SAIL composite systems.


Asunto(s)
Líquidos Iónicos , Albúmina Sérica Humana , Humanos , Transferencia Resonante de Energía de Fluorescencia , Líquidos Iónicos/química , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Tensoactivos/química
2.
Int J Biol Macromol ; 268(Pt 1): 131862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670183

RESUMEN

Although cadmium-based quantum dots (QDs) are highly promising candidates for numerous biological applications, their intrinsic toxicity limits their pertinency in living systems. Surface functionalization of QDs with appropriate molecules could reduce the toxicity level. Herein, we have synthesized the smaller sized (1-5 nm) aqueous-compatible biogenic CdTe QDs using human serum albumin (HSA) as a surface passivating agent via a greener approach. HSA-functionalized CdTe QDs have been explored in multiple in vitro sensing and biological applications, namely, (1) sensing, (2) anti-bacterial and (3) anti-cancer properties. Using CdTe-HSA QDs as a fluorescence probe, a simple fluorometric method has been developed for highly sensitive and selective detection of blood marker bilirubin and hazardous Hg2+ ion with a limit of detection (LOD) of 3.38 and 0.53 ng/mL, respectively. CdTe-HSA QDs also acts as a sensor for standard antibiotics, tetracycline and rifampicin with LOD values of 41.34 and 114.99 ng/mL, respectively. Nano-sized biogenic CdTe-HSA QDs have shown promising anti-bacterial activities against both gram-negative, E. coli and gram-positive, E. faecalis strains confirming more effectiveness against E. faecalis strains. The treatment of human cervical cancer cell lines (HeLa cells) with the synthesized QDs reflected the proficient cytotoxic properties of QDs.


Asunto(s)
Antibacterianos , Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Albúmina Sérica Humana , Telurio , Puntos Cuánticos/química , Telurio/química , Humanos , Compuestos de Cadmio/química , Antibacterianos/farmacología , Antibacterianos/química , Técnicas Biosensibles/métodos , Albúmina Sérica Humana/química , Escherichia coli/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Bilirrubina
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123669, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38006865

RESUMEN

Derivatives of thiazole-pyrazole fused benzo-coumarin compounds were successfully synthesized and characterized, followed by a comprehensive spectroscopic investigation on various photophysical properties in different media. The multipronged approach using steady state and time resolved fluorescence spectroscopy pointed out the impact of substitution in the estimated spectroscopic and other physicochemical properties of the systems. Further, the evaluation of anti-acetylcholinesterase (anti-AChE) activity yielded significant insight into the therapeutic potential of the synthesized coumarinyl compounds for the treatment of Alzheimer's disease (AD). The findings revealed a non-competitive mode of inhibition mechanism, with an estimated IC50 value of 67.72 ± 2.00 nM observed for one of the investigated systems as AChE inhibitor. Notably, this value is even lower than that of an FDA-approved AD drug Donepezil (DON), indicating the enhanced potency of the coumarin derivatives in inhibiting AChE. Interestingly, significant diminution in inhibition was observed in presence of human serum albumin (HSA) as evidenced by the relative increase in IC50 value by 8 âˆ¼ 39 % in different cases, which emphasized the role of albumin proteins to control therapeutic efficacies of potential medications. In-depth spectroscopic and in-silico analysis quantified the nature of interactions of the investigated systems with HSA and AChE. Overall, the outcomes of this study provide significant understanding into the biophysical characteristics of novel thiazole-pyrazole fused benzo-coumarin systems, which could aid in the development of new cholinergic agents for the treatment of AD and materials based on coumarin motifs.


Asunto(s)
Enfermedad de Alzheimer , Albúmina Sérica Humana , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Antagonistas Colinérgicos/farmacología , Antagonistas Colinérgicos/uso terapéutico , Tiazoles/farmacología , Tiazoles/química , Cumarinas/farmacología , Cumarinas/química , Espectrometría de Fluorescencia , Pirazoles/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Relación Estructura-Actividad
4.
J Phys Chem A ; 125(32): 6964-6975, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34372657

RESUMEN

Excited state deactivation properties and the effects of solvent hydrogen bonding (HB) on the photophysical behavior of 2,2'-dypyridylamine (DPyA) were investigated by steady state and time-resolved fluorescence experiments, molecular docking, and density functional theory (DFT) calculations. In addition to the polarity effect, the contributions of solvent HB donation (HBD) acidity and HB acceptance (HBA) basicity to modulate the solvatochromic spectral properties were estimated from multiparametric linear regression analysis using Kamlet-Taft (KT) and Catalán formalisms. The importance of C-N bond torsion, leading to the trans → cis conversion, was manifested by substantial increase in DPyA fluorescence yield in the presence of cyclodextrin (CD) and glycerol. The unusually low fluorescence yield in aqueous medium was explained on the basis of synergistic effect of solvent hydrogen bonding combined with excited state conformational isomerization, which renders DPyA to be an excellent environment sensitive fluorescence reporter. The experimental results were verified with structural insights obtained from DFT calculations at B3LYP/6-311++G(d,p) level and construction of potential energy surface (PES) in the ground state as well as in the excited states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...