Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 10583, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601289

RESUMEN

Productivity of Indian mustard (B. juncea), a major oil yielding crop in rapeseed-mustard group is heavily inflicted by mustard aphid, L. erysimi. Mustard aphid, a specialist aphid species on rapeseed-mustard crops, rapidly multiplies and colonizes the plants leading to successful infestation. In contrary, legume specific cowpea aphid, A. craccivora when released on B. juncea plants fails to build up population and thus remains unsuccessful in infestation. In the present study, differential host response of B. juncea to the two aphid species, one being successful insect-pest and the other being unsuccessful on it has been studied based on transcriptome analysis. Differential feeding efficiency of the two aphid species on mustard plants was evident from the amount of secreted honeydews. Leaf-transcriptomes of healthy and infested plants, treated with the two aphid species, were generated by RNA sequencing on Illumina platform and de novo assembly of the quality reads. A comparative assessment of the differentially expressed genes due to treatments revealed a large extent of overlaps as well as distinctness with respect to the set of genes and their direction of regulation. With respect to host-genes related to transcription factors, oxidative homeostasis, defense hormones and secondary metabolites, L. erysimi led to either suppression or limited activation of the transcript levels compared to A. craccivora. Further, a comprehensive view of the DEGs suggested more potential of successful insect-pests towards transcriptional reprogramming of the host. qRT-PCR based validation of randomly selected up- and down-regulated transcripts authenticated the transcriptome data.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Planta de la Mostaza/genética , Control Biológico de Vectores/métodos , Animales , Áfidos/patogenicidad , Áfidos/fisiología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Insecticidas , Enfermedades de las Plantas/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Secuenciación del Exoma/métodos
2.
Front Plant Sci ; 7: 2019, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28111587

RESUMEN

Haploids and doubled haploids are invaluable for basic genetic studies and in crop improvement. A novel method of haploid induction through genetic engineering of the Centromere Histone Protein gene, CENH3, has been demonstrated in Arabidopsis. The present study was undertaken to develop haploid inducer (HI) lines of Brassica juncea based on the principles elaborated in Arabidopsis. B. juncea was found to carry three copies of CENH3 which generated five different transcripts, of which three transcripts resulted from alternative splicing. Unlike Arabidopsis thaliana where native CENH3 gene was knocked out for constructing HI lines, we used RNAi approach to knockdown the native CENH3 genes. Further, to rescue CENH3 silenced cells, a GFP-CENH3-tailswap construct having N terminal GFP fused to H3.3 tail sequences and synthetic CENH3 histone fold domain sequences was devised. A total 38 transgenic B. juncea plants were regenerated following co-transformation with both silencing and rescue cassettes and transgenics carrying either or both the constructs were obtained. Transgenic status was confirmed through PCR, Southern and qRT-PCR analyses. Co-transformed lines were crossed to untransformed B. juncea or a line expressing only GFP-tailswap. FACS and cytological analyses of progenies revealed partial or complete elimination of B. juncea chromosomes thereby giving rise to aneuploids and haploid. This is the first report in a polyploid crop demonstrating that CENH3 engineering could be used to develop HI lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...