Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sleep ; 47(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38227830

RESUMEN

STUDY OBJECTIVES: In aging, reduced delta power (0.5-4 Hz) during N2 and N3 sleep has been associated with gray matter (GM) atrophy and hypometabolism within frontal regions. Some studies have also reported associations between N2 and N3 sleep delta power in specific sub-bands and amyloid pathology. Our objective was to better understand the relationships between spectral power in delta sub-bands during N2-N3 sleep and brain integrity using multimodal neuroimaging. METHODS: In-home polysomnography was performed in 127 cognitively unimpaired older adults (mean age ±â€…SD: 69.0 ±â€…3.8 years). N2-N3 sleep EEG power was calculated in delta (0.5-4 Hz), slow delta (0.5-1 Hz), and fast delta (1-4 Hz) frequency bands. Participants also underwent magnetic resonance imaging and Florbetapir-PET (early and late acquisitions) scans to assess GM volume, brain perfusion, and amyloid burden. Amyloid accumulation over ~21 months was also quantified. RESULTS: Higher delta power was associated with higher GM volume mainly in fronto-cingular regions. Specifically, slow delta power was positively correlated with GM volume and perfusion in these regions, while the inverse association was observed with fast delta power. Delta power was neither associated with amyloid burden at baseline nor its accumulation over time, whatever the frequency band considered. CONCLUSIONS: Our results show that slow delta is particularly associated with preserved brain structure, and highlight the importance of analyzing delta power sub-bands to better understand the associations between delta power and brain integrity. Further longitudinal investigations with long follow-ups are needed to disentangle the associations among sleep, amyloid pathology, and dementia risk in older populations. CLINICAL TRIAL INFORMATION: Name: Study in Cognitively Intact Seniors Aiming to Assess the Effects of Meditation Training (Age-Well). URL: https://clinicaltrials.gov/ct2/show/NCT02977819?term=Age-Well&draw=2&rank=1. See STROBE_statement_AGEWELL in supplemental materials. REGISTRATION: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.


Asunto(s)
Sueño de Onda Lenta , Anciano , Humanos , Encéfalo/diagnóstico por imagen , Electroencefalografía , Neuroimagen , Polisomnografía , Sueño , Fases del Sueño
2.
Neurology ; 101(4): e370-e385, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37258299

RESUMEN

BACKGROUND AND OBJECTIVES: Sleep disordered breathing (SDB) has been related to amyloid deposition and an increased dementia risk. However, how SDB relates to medial temporal lobe neurodegeneration and subsequent episodic memory impairment is unclear. Our objective was to investigate the impact of amyloid positivity on the associations between SDB severity, medial temporal lobe subregions, and episodic memory performance in cognitively unimpaired older adults. METHODS: Data were acquired between 2016 and 2020 in the context of the Age-Well randomized controlled trial of the Medit-Aging European project. Participants older than 65 years who were free of neurologic, psychiatric, or chronic medical diseases were recruited from the community. They completed a neuropsychological evaluation, in-home polysomnography, a Florbetapir PET, and an MRI, including a specific high-resolution assessment of the medial temporal lobe and hippocampal subfields. Multiple linear regressions were conducted to test interactions between amyloid status and SDB severity on the volume of MTL subregions, controlling for age, sex, education, and the ApoE4 status. Secondary analyses aimed at investigating the links between SDB, MTL subregional atrophy, and episodic memory performance at baseline and at a mean follow-up of 20.66 months in the whole cohort and in subgroups stratified according to amyloid status. RESULTS: We included 122 cognitively intact community-dwelling older adults (mean age ± SD: 69.40 ± 3.85 years, 77 women, 26 Aß+ individuals) in baseline analyses and 111 at follow-up. The apnea-hypopnea index interacted with entorhinal (ß = -0.81, p < 0.001, pη2 = 0.19), whole hippocampal (ß = -0.61, p < 0.001, pη2 = 0.10), subiculum (ß = -0.56, p = 0.002, pη2 = 0.08), CA1 (ß = -0.55, p = 0.002, pη2 = 0.08), and DG (ß = -0.53, p = 0.003, pη2 = 0.08) volumes such that a higher sleep apnea severity was related to lower MTL subregion volumes in amyloid-positive individuals, but not in those who were amyloid negative. In the whole cohort, lower whole hippocampal (r = 0.27, p = 0.005) and CA1 (r = 0.28, p = 0.003) volumes at baseline were associated with worse episodic memory performance at follow-up. DISCUSSION: Overall, we showed that SDB was associated with MTL atrophy in cognitively asymptomatic older adults engaged in the Alzheimer continuum, which may increase the risk of developing memory impairment over time. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT02977819.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Anciano , Lóbulo Temporal/metabolismo , Acrilatos , Amiloide/metabolismo , Imagen por Resonancia Magnética , Proteínas Amiloidogénicas , Atrofia , Tomografía de Emisión de Positrones , Péptidos beta-Amiloides/metabolismo
3.
Ann Neurol ; 93(5): 979-990, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36641644

RESUMEN

OBJECTIVE: Rapid eye movement (REM) sleep is markedly altered in Alzheimer's disease (AD), and its reduction in older populations is associated with AD risk. However, little is known about the underlying brain mechanisms. Our objective was to investigate the relationships between REM sleep integrity and amyloid deposition, gray matter volume, and perfusion in aging. METHODS: We included 121 cognitively unimpaired older adults (76 women, mean age 68.96 ± 3.82 years), who underwent a polysomnography, T1-weighted magnetic resonance imaging, early and late Florbetapir positron emission tomography scans to evaluate gray matter volume, perfusion, and amyloid deposition. We computed indices reflecting REM sleep macro- and microstructural integrity (ie, normalized electroencephalographic spectral power values). Voxel-wise multiple regression analyses were conducted between REM sleep indices and neuroimaging data, controlling for age, sex, education, the apnea-hypopnea index, and the apolipoprotein E ε4 status. RESULTS: Lower perfusion in frontal, anterior and posterior cingulate, and precuneus areas was associated with decreased delta power and electroencephalographic slowing (slow/fast frequencies ratio), and increased alpha and beta power. To a lower extent, similar results were obtained between gray matter volume and delta, alpha, and beta power. In addition, lower REM sleep theta power was more marginally associated with greater diffuse amyloid deposition and lower gray matter volume in fronto-temporal and parieto-occipital areas. INTERPRETATION: These results suggest that alterations of REM sleep microstructure are associated with greater neurodegeneration and neocortical amyloid deposition in older adults. Further studies are warranted to replicate these findings, and determine whether older adults exhibiting REM sleep alterations are more at risk of cognitive decline and belonging to the Alzheimer's continuum. ANN NEUROL 2023;93:979-990.


Asunto(s)
Enfermedad de Alzheimer , Sueño REM , Humanos , Femenino , Anciano , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Envejecimiento , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos
4.
Sleep ; 46(5)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36433753

RESUMEN

Sleep plays a crucial role in memory consolidation. Recent data in rodents and young adults revealed that fast spindle band power fluctuates at a 0.02-Hz infraslow scale during non-rapid eye movement (NREM) sleep. These fluctuations result from a periodic temporal clustering of spindles and may modulate sleep maintenance and memory consolidation. With age, sleep undergoes substantial changes but age-related changes in spindle clustering have never been investigated. Polysomnography data were collected in 147 older (mean age ±â€…SD: 69.3 ±â€…4.1 years) and 32 young-middle aged (34.5 ±â€…10.9 years) adults. Sleep-dependent memory consolidation was assessed in a subsample of 57 older adults using a visuospatial memory task. We analyzed power fluctuations in fast spindle frequency band, detected fast spindles, and quantified their clustering during the night separating encoding and retrieval. Fast spindle band power fluctuated at a 0.02-Hz infraslow scale in young-middle aged and older adults. However, the proportion of clustered fast spindles decreased non-linearly with age (p < .001). This effect was not mediated by NREM sleep fragmentation. The clustering level of fast spindles modulated their characteristics (p < .001). Finally, the mean size of spindle clusters was positively associated with memory consolidation (p = .036) and negatively with NREM sleep micro-arousal density (p = .033). These results suggest that clusters of fast spindles may constitute stable sleep periods promoting off-line processes such as memory consolidation. We emphasize the relevance of considering spindle dynamics, obviously impaired during aging, to understand the impact of age-related sleep changes on memory. Clinical Trial Information: Name: Study in Cognitively Intact Seniors Aiming to Assess the Effects of Meditation Training (Age-Well). URL: https://clinicaltrials.gov/ct2/show/NCT02977819?term=Age-Well&draw=2&rank=1. See STROBE_statement_AGEWELL.doc in supplementary material. Registration: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.


Asunto(s)
Consolidación de la Memoria , Sueño de Onda Lenta , Movimientos Oculares , Sueño , Polisomnografía/métodos , Electroencefalografía
5.
J Clin Sleep Med ; 17(4): 719-727, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283752

RESUMEN

STUDY OBJECTIVES: To determine the polysomnography characteristics during sleep paralysis, false awakenings, and lucid dreaming (which are states intermediate to rapid eye movement [REM] sleep and wake but exceptionally observed in sleep laboratory). METHODS: In 5 participants, we captured 5 episodes of sleep paralysis (2 time marked with the ocular left-right-left-right code normally used to signal lucid dreaming, 1 time marked by an external noise, and 2 retrospectively reported) and 2 episodes of false awakening. The sleep coding (using 3-second mini-epochs) and spectral electroencephalography analysis were compared during these episodes and normal REM sleep as well as wakefulness in the same 4 of 5 participants and vs lucid REM sleep in 4 other patients with narcolepsy. RESULTS: During episodes of sleep paralysis, 70.8% of mini-epochs contained theta electroencephalography rhythm (vs 89.7% in REM sleep and 21.2% in wakefulness), 93.8% contained chin muscle atonia (vs 89.7% in REM sleep and 33.3% in wakefulness), and 6.9% contained rapid eye movements (vs 11.9% in REM sleep and 8.1% in wakefulness). The electroencephalography spectrum during sleep paralysis was intermediate between wakefulness and REM sleep in the alpha, theta, and delta frequencies, whereas the beta frequencies were not different between sleep paralysis and normal REM sleep. The power spectrum during false awakening followed the same profile as in sleep paralysis. CONCLUSIONS: The predominant theta electroencephalography rhythm during sleep paralysis and false awakenings (with rare and lower alpha rhythm) suggests that the brain during sleep paralysis is not in an awake but in a dreaming state.


Asunto(s)
Parálisis del Sueño , Sueño REM , Sueños , Electroencefalografía , Humanos , Estudios Retrospectivos , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...