Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6(1): 25, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28003660

RESUMEN

DNA focused panel sequencing has been rapidly adopted to assess therapeutic targets in advanced/refractory cancer. Integrated Genomic Profiling (IGP) utilising DNA/RNA with tumour/normal comparisons in a Clinical Laboratory Improvement Amendments (CLIA) compliant setting enables a single assay to provide: therapeutic target prioritisation, novel target discovery/application and comprehensive germline assessment. A prospective study in 35 advanced/refractory cancer patients was conducted using CLIA-compliant IGP. Feasibility was assessed by estimating time to results (TTR), prioritising/assigning putative therapeutic targets, assessing drug access, ascertaining germline alterations, and assessing patient preferences/perspectives on data use/reporting. Therapeutic targets were identified using biointelligence/pathway analyses and interpreted by a Genomic Tumour Board. Seventy-five percent of cases harboured 1-3 therapeutically targetable mutations/case (median 79 mutations of potential functional significance/case). Median time to CLIA-validated results was 116 days with CLIA-validation of targets achieved in 21/22 patients. IGP directed treatment was instituted in 13 patients utilising on/off label FDA approved drugs (n = 9), clinical trials (n = 3) and single patient IND (n = 1). Preliminary clinical efficacy was noted in five patients (two partial response, three stable disease). Although barriers to broader application exist, including the need for wider availability of therapies, IGP in a CLIA-framework is feasible and valuable in selection/prioritisation of anti-cancer therapeutic targets.


Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Resistencia a Medicamentos , Genómica/métodos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Humanos , Estudios Prospectivos
2.
PLoS One ; 10(7): e0132831, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26181416

RESUMEN

To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results and clinical outcomes. We report quality control outcomes and nucleic acid yields of our RCC submissions (N=16) to The Cancer Genome Atlas (TCGA) project, as well as newer discovery platforms, by describing mass spectrometry analysis of albumin oxidation in plasma and 6 ChIP sequencing libraries generated from nephrectomy specimens after histone H3 lysine 36 trimethylation (H3K36me3) immunoprecipitation. From June 1, 2010, through January 1, 2013, we enrolled 328 patients with RCC. Our mean (SD) TCGA RNA integrity numbers (RINs) were 8.1 (0.8) for papillary RCC, with a 12.5% overall rate of sample disqualification for RIN <7. Banked plasma had significantly less albumin oxidation (by mass spectrometry analysis) than plasma kept at 25 °C (P<.001). For ChIP sequencing, the FastQC score for average read quality was at least 30 for 91% to 95% of paired-end reads. In parallel, we analyzed frozen tissue by RNA sequencing; after genome alignment, only 0.2% to 0.4% of total reads failed the default quality check steps of Bowtie2, which was comparable to the disqualification ratio (0.1%) of the 786-O RCC cell line that was prepared under optimal RNA isolation conditions. The overall correlation coefficients for gene expression between Mayo Clinic vs TCGA tissues ranged from 0.75 to 0.82. These data support the generation of high-quality nucleic acids for genomic analyses from banked RCC. Importantly, the protocol does not interfere with routine clinical care. Collections over defined time points during disease treatment further enhance collaborative efforts to integrate genomic information with outcomes.


Asunto(s)
Bancos de Muestras Biológicas/organización & administración , Carcinoma de Células Renales/genética , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Neoplasias Renales/genética , ARN Neoplásico/genética , Adulto , Anciano , Anciano de 80 o más Años , Arizona , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/cirugía , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Femenino , Biblioteca de Genes , Histonas/metabolismo , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Masculino , Metilación , Persona de Mediana Edad , Oxidación-Reducción , Control de Calidad , ARN Neoplásico/química , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Albúmina Sérica/química
3.
Hepatology ; 61(5): 1627-42, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25580681

RESUMEN

UNLABELLED: Cholangiocarcinoma (CCA) is a lethal hepatobiliary neoplasm originating from the biliary apparatus. In humans, CCA risk factors include hepatobiliary inflammation and fibrosis. The recently identified interleukin (IL)-1 family member, IL-33, has been shown to be a biliary mitogen which also promotes liver inflammation and fibrosis. Our aim was to generate a mouse model of CCA mimicking the human disease. Ectopic oncogene expression in the biliary tract was accomplished by the Sleeping Beauty transposon transfection system with transduction of constitutively active AKT (myr-AKT) and Yes-associated protein. Intrabiliary instillation of the transposon-transposase complex was coupled with lobar bile duct ligation in C57BL/6 mice, followed by administration of IL-33 for 3 consecutive days. Tumors developed in 72% of the male mice receiving both oncogenes plus IL-33 by 10 weeks but in only 20% of the male mice transduced with the oncogenes alone. Tumors expressed SOX9 and pancytokeratin (features of CCA) but were negative for HepPar1 (a marker of hepatocellular carcinoma). Substantive overlap with human CCA specimens was revealed by RNA profiling. Not only did IL-33 induce IL-6 expression by human cholangiocytes but it likely facilitated tumor development in vivo by an IL-6-sensitive process as tumor development was significantly attenuated in Il-6(-/-) male animals. Furthermore, tumor formation occurred at a similar rate when IL-6 was substituted for IL-33 in this model. CONCLUSION: The transposase-mediated transduction of constitutively active AKT and Yes-associated protein in the biliary epithelium coupled with lobar obstruction and IL-33 administration results in the development of CCA with morphological and biochemical features of the human disease; this model highlights the role of inflammatory cytokines in CCA oncogenesis.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Colangiocarcinoma/genética , Interleucina-6/fisiología , Interleucinas/fisiología , Oncogenes/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas de Ciclo Celular , Humanos , Interleucina-33 , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Genéticos , Fosfoproteínas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Células Tumorales Cultivadas , Proteínas Señalizadoras YAP
4.
Br J Haematol ; 168(4): 507-10, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25302557

RESUMEN

We constructed a multiple myeloma (MM)-specific gene panel for targeted sequencing and investigated 72 untreated high-risk (del17p) MM patients. Mutations were identified in 78% of the patients. While the majority of studied genes were mutated at similar frequency to published literature, the prevalence of TP53 mutation was increased (28%) and no mutations were found in FAM46C. This study provides a comprehensive insight into the mutational landscape of del17p high-risk MM. Additionally, our work demonstrates the practical use of a customized sequencing panel, as an easy, cheap and fast approach to characterize the mutational profile of MM.


Asunto(s)
ADN de Neoplasias/genética , Genes Relacionados con las Neoplasias , Mieloma Múltiple/genética , Análisis de Secuencia de ADN/métodos , Aberraciones Cromosómicas , Cromosomas Humanos Par 17/ultraestructura , Análisis Mutacional de ADN/métodos , Genes p53 , Humanos , Hibridación Fluorescente in Situ , Mutación , Riesgo
5.
Blood ; 124(4): 536-45, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-24914135

RESUMEN

Cereblon (CRBN) mediates immunomodulatory drug (IMiD) action in multiple myeloma (MM). Using 2 different methodologies, we identified 244 CRBN binding proteins and established relevance to MM biology by changes in their abundance after exposure to lenalidomide. Proteins most reproducibly binding CRBN (>fourfold vs controls) included DDB1, CUL4A, IKZF1, KPNA2, LTF, PFKL, PRKAR2A, RANGAP1, and SHMT2. After lenalidomide treatment, the abundance of 46 CRBN binding proteins decreased. We focused attention on 2 of these-IKZF1 and IKZF3. IZKF expression is similar across all MM stages or subtypes; however, IKZF1 is substantially lower in 3 of 5 IMiD-resistant MM cell lines. The cell line (FR4) with the lowest IKZF1 levels also harbors a damaging mutation and a translocation that upregulates IRF4, an IKZF target. Clinical relevance of CRBN-binding proteins was demonstrated in 44 refractory MM patients treated with pomalidomide and dexamethasone therapy in whom low IKZF1 gene expression predicted lack of response (0/11 responses in the lowest expression quartile). CRBN, IKZF1, and KPNA2 levels also correlate with significant differences in overall survival. Our study identifies CRBN-binding proteins and demonstrates that in addition to CRBN, IKZF1, and KPNA2, expression can predict survival outcomes.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Resistencia a Antineoplásicos , Factores Inmunológicos/farmacología , Mieloma Múltiple/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Antiinflamatorios/farmacología , Western Blotting , Ensayos Clínicos Fase II como Asunto , Dexametasona/farmacología , Citometría de Flujo , Estudios de Seguimiento , Humanos , Factor de Transcripción Ikaros/metabolismo , Inmunoprecipitación , Lenalidomida , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/mortalidad , Pronóstico , Estudios Prospectivos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tasa de Supervivencia , Talidomida/análogos & derivados , Talidomida/farmacología , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas , alfa Carioferinas/metabolismo
6.
PLoS Genet ; 10(2): e1004135, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24550739

RESUMEN

Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.


Asunto(s)
Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Receptores ErbB/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib , Genoma Humano , Humanos , Imidazoles/administración & dosificación , Indazoles , Terapia Molecular Dirigida , Mutación , Pronóstico , Inhibidores de Proteínas Quinasas , Piridazinas/administración & dosificación , Pirimidinas/administración & dosificación , Quinazolinas/administración & dosificación , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Sulfonamidas/administración & dosificación , Transcriptoma
7.
PLoS One ; 9(2): e87113, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505276

RESUMEN

Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2.


Asunto(s)
Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 12/genética , Reordenamiento Génico , Inestabilidad Genómica , Liposarcoma/genética , Proteínas de Neoplasias/genética , Sinaptotagmina I/genética , ADN de Neoplasias/genética , Receptores con Dominio Discoidina , Femenino , Amplificación de Genes , Genes Relacionados con las Neoplasias , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Familia de Multigenes , Proteínas Tirosina Quinasas Receptoras , Receptores Mitogénicos
8.
Leuk Res ; 38(1): 23-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24129344

RESUMEN

Cereblon (CRBN) mediates immunomodulatory drug (IMiD) action in multiple myeloma (MM). We demonstrate here that no patient with very low CRBN expression responded to IMiD plus dexamethasone therapy. In 53 refractory MM patients treated with pomalidomide and dexamethasone, CRBN levels predict for decreased response rates and significant differences in PFS (3.0 vs. 8.9 months, p<0.001) and OS (9.1 vs. 27.2 months, p=0.01) (lowest quartile vs. highest three quartiles). While higher CRBN levels can serve as a surrogate for low risk disease, our study demonstrates that low CRBN expression can predict resistance to IMiD monotherapy and is a predictive biomarker for survival outcomes.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Péptido Hidrolasas/genética , Proteínas Adaptadoras Transductoras de Señales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Dexametasona/administración & dosificación , Resistencia a Antineoplásicos/genética , Humanos , Mieloma Múltiple/patología , Pronóstico , Análisis de Supervivencia , Talidomida/administración & dosificación , Talidomida/análogos & derivados , Resultado del Tratamiento , Ubiquitina-Proteína Ligasas
9.
Syst Biol ; 62(5): 752-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23736103

RESUMEN

Rooting phylogenies is critical for understanding evolution, yet the importance, intricacies and difficulties of rooting are often overlooked. For rooting, polymorphic characters among the group of interest (ingroup) must be compared to those of a relative (outgroup) that diverged before the last common ancestor (LCA) of the ingroup. Problems arise if an outgroup does not exist, is unknown, or is so distant that few characters are shared, in which case duplicated genes originating before the LCA can be used as proxy outgroups to root diverse phylogenies. Here, we describe a genome-wide expansion of this technique that can be used to solve problems at the other end of the evolutionary scale: where ingroup individuals are all very closely related to each other, but the next closest relative is very distant. We used shared orthologous single nucleotide polymorphisms (SNPs) from 10 whole genome sequences of Coxiella burnetii, the causative agent of Q fever in humans, to create a robust, but unrooted phylogeny. To maximize the number of characters informative about the rooting, we searched entire genomes for polymorphic duplicated regions where orthologs of each paralog could be identified so that the paralogs could be used to root the tree. Recent radiations, such as those of emerging pathogens, often pose rooting challenges due to a lack of ingroup variation and large genomic differences with known outgroups. Using a phylogenomic approach, we created a robust, rooted phylogeny for C. burnetii. [Coxiella burnetii; paralog SNPs; pathogen evolution; phylogeny; recent radiation; root; rooting using duplicated genes.].


Asunto(s)
Clasificación/métodos , Coxiella burnetii/clasificación , Coxiella burnetii/genética , Genómica , Filogenia , Genoma Bacteriano/genética , Genómica/normas
10.
PLoS One ; 8(2): e56466, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23424663

RESUMEN

The evolution of resistance in Staphylococcus aureus occurs rapidly, and in response to all known antimicrobial treatments. Numerous studies of model species describe compensatory roles of mutations in mediating competitive fitness, and there is growing evidence that these mutation types also drive adaptation of S. aureus strains. However, few studies have tracked amino acid changes during the complete evolutionary trajectory of antibiotic adaptation or been able to predict their functional relevance. Here, we have assessed the efficacy of computational methods to predict biological resistance of a collection of clinically known Resistance Associated Mutations (RAMs). We have found that >90% of known RAMs are incorrectly predicted to be functionally neutral by at least one of the prediction methods used. By tracing the evolutionary histories of all of the false negative RAMs, we have discovered that a significant number are reversion mutations to ancestral alleles also carried in the MSSA476 methicillin-sensitive isolate. These genetic reversions are most prevalent in strains following daptomycin treatment and show a tendency to accumulate in biological pathway reactions that are distinct from those accumulating non-reversion mutations. Our studies therefore show that in addition to non-reversion mutations, reversion mutations arise in isolates exposed to new antibiotic treatments. It is possible that acquisition of reversion mutations in the genome may prevent substantial fitness costs during the progression of resistance. Our findings pose an interesting question to be addressed by further clinical studies regarding whether or not these reversion mutations lead to a renewed vulnerability of a vancomycin or daptomycin resistant strain to antibiotics administered at an earlier stage of infection.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biología Computacional , Farmacorresistencia Bacteriana/genética , Evolución Molecular , Mutación , Staphylococcus aureus/genética , Alelos , Proteínas Bacterianas/metabolismo , Reacciones Falso Negativas , Humanos , Meticilina/farmacología , Fenotipo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
11.
PLoS Genet ; 7(10): e1002345, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22046142

RESUMEN

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Asunto(s)
Onygenales/genética , Paracoccidioides/genética , Paracoccidioidomicosis/microbiología , Proteínas Quinasas/genética , Metabolismo de los Hidratos de Carbono/genética , Sistemas de Liberación de Medicamentos , Evolución Molecular , Genoma Fúngico , Genoma Mitocondrial/genética , Humanos , Familia de Multigenes/genética , Onygenales/enzimología , Paracoccidioides/enzimología , Filogenia , Proteolisis , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN
12.
PLoS One ; 6(5): e20295, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21637805

RESUMEN

Whole genome comparative studies of many bacterial pathogens have shown an overall high similarity of gene content (>95%) between phylogenetically distinct subspecies. In highly clonal species that share the bulk of their genomes subtle changes in gene content and small-scale polymorphisms, especially those that may alter gene expression and protein-protein interactions, are more likely to have a significant effect on the pathogen's biology. In order to better understand molecular attributes that may mediate the adaptation of virulence in infectious bacteria, a comparative study was done to further analyze the evolution of a gene encoding an o-methyltransferase that was previously identified as a candidate virulence factor due to its conservation specifically in highly pathogenic Francisella tularensis subsp. tularensis strains. The o-methyltransferase gene is located in the genomic neighborhood of a known pathogenicity island and predicted site of rearrangement. Distinct o-methyltransferase subtypes are present in different Francisella tularensis subspecies. Related protein families were identified in several host species as well as species of pathogenic bacteria that are otherwise very distant phylogenetically from Francisella, including species of Mycobacterium. A conserved sequence motif profile is present in the mammalian host and pathogen protein sequences, and sites of non-synonymous variation conserved in Francisella subspecies specific o-methyltransferases map proximally to the predicted active site of the orthologous human protein structure. Altogether, evidence suggests a role of the F. t. subsp. tularensis protein in a mechanism of molecular mimicry, similar perhaps to Legionella and Coxiella. These findings therefore provide insights into the evolution of niche-restriction and virulence in Francisella, and have broader implications regarding the molecular mechanisms that mediate host-pathogen relationships.


Asunto(s)
Francisella tularensis/enzimología , Francisella tularensis/patogenicidad , Interacciones Huésped-Patógeno/genética , Metiltransferasas/química , Metiltransferasas/genética , Imitación Molecular/genética , Homología de Secuencia de Aminoácido , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada/genética , Francisella tularensis/genética , Reordenamiento Génico/genética , Genoma Bacteriano/genética , Humanos , Espacio Intracelular/microbiología , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , Especificidad de la Especie , Virulencia/genética
13.
BMC Microbiol ; 11: 139, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21682874

RESUMEN

BACKGROUND: Francisella tularensis, the causative agent of tularemia, displays subspecies-specific differences in virulence, geographic distribution, and genetic diversity. F. tularensis subsp. holarctica is widely distributed throughout the Northern Hemisphere. In Europe, F. tularensis subsp. holarctica isolates have largely been assigned to two phylogenetic groups that have specific geographic distributions. Most isolates from Western Europe are assigned to the B.Br.FTNF002-00 group, whereas most isolates from Eastern Europe are assigned to numerous lineages within the B.Br.013 group. The eastern geographic extent of the B.Br.013 group is currently unknown due to a lack of phylogenetic knowledge about populations at the European/Asian juncture and in Asia. In this study, we address this knowledge gap by describing the phylogenetic structure of F. tularensis subsp. holarctica isolates from the country of Georgia, and by placing these isolates into a global phylogeographic context. RESULTS: We identified a new genetic lineage of F. tularensis subsp. holarctica from Georgia that belongs to the B.Br.013 group. This new lineage is genetically and geographically distinct from lineages previously described from the B.Br.013 group from Central-Eastern Europe. Importantly, this new lineage is basal within the B.Br.013 group, indicating the Georgian lineage diverged before the diversification of the other known B.Br.013 lineages. Although two isolates from the Georgian lineage were collected nearby in the Ukrainian region of Crimea, all other global isolates assigned to this lineage were collected in Georgia. This restricted geographic distribution, as well as the high levels of genetic diversity within the lineage, is consistent with a relatively older origin and localized differentiation. CONCLUSIONS: We identified a new lineage of F. tularensis subsp. holarctica from Georgia that appears to have an older origin than any other diversified lineages previously described from the B.Br.013 group. This finding suggests that additional phylogenetic studies of F. tularensis subsp. holarctica populations in Eastern Europe and Asia have the potential to yield important new insights into the evolutionary history and phylogeography of this broadly dispersed F. tularensis subspecies.


Asunto(s)
Francisella tularensis/clasificación , Francisella tularensis/genética , Filogeografía , Tularemia/microbiología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Francisella tularensis/aislamiento & purificación , Georgia (República) , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
14.
PLoS Pathog ; 5(5): e1000459, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19478886

RESUMEN

Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.


Asunto(s)
Hibridación Genómica Comparativa , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Secuencia de Bases , Francisella tularensis/aislamiento & purificación , Genes Bacterianos/genética , Filogenia , Recombinación Genética , Virulencia/genética
15.
Nat Cell Biol ; 4 Suppl: s50-6, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12479615

RESUMEN

Meiosis reduces the number of chromosomes carried by a diploid organism by half, partitioning precisely one haploid genome into each gamete. The basic events of meiosis reflect three meiosis-specific processes: first, pairing and synapsis of homologous chromosomes; second, high-frequency, precisely controlled, reciprocal crossover; third, the regulation of sister-chromatid cohesion (SCC), such that during anaphase I, SCC is released along the chromosome arms, but not at the centromeres. The failure of any of these processes can result in aneuploidy or a failure of meiotic segregation.


Asunto(s)
Meiosis , Reproducción/genética , Animales , Drosophila melanogaster , Humanos , Metafase , Modelos Biológicos , Recombinación Genética , Saccharomyces cerevisiae , Intercambio de Cromátides Hermanas , Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...