Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 14(12): 1746-1753, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116405

RESUMEN

The transcription factor YAP-TEAD is the downstream effector of the Hippo pathway which controls cell proliferation, apoptosis, tissue repair, and organ growth. Dysregulation of the Hippo pathway has been correlated with carcinogenic processes. A co-crystal structure of TEAD with its endogenous ligand palmitic acid (PA) as well as with flufenamic acid (FA) has been disclosed. Here we report the development of HC-258, which derives from FA and possesses an oxopentyl chain that mimics a molecule of PA as well as an acrylamide that reacts covalently with TEAD's cysteine. HC-258 reduces the CTGF, CYR61, AXL, and NF2 transcript levels and inhibits the migration of MDA-MB-231 breast cancer cells. Co-crystallization with hTEAD2 confirmed that HC-258 binds within TEAD's PA pocket, where it forms a covalent bond with its cysteine.

2.
Chemistry ; 27(53): 13330-13336, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34357653

RESUMEN

The N-arylation of the side chain of histidine by using triarylbismuthines is reported. The reaction is promoted by copper(II) acetate in dichloromethane at 40 °C under oxygen in the presence of diisopropylethylamine and 1,10-phenanthroline and allows the transfer of aryl groups with substituents at any position of the aromatic ring. The reaction shows excellent functional group tolerance and is applicable to dipeptides where the histidine is located at the N terminus. A histidine-guided backbone N-H arylation was observed in dipeptides where the histidine occupies the C terminus.


Asunto(s)
Cobre , Histidina , Catálisis , Imidazoles , Indicadores y Reactivos
3.
Org Biomol Chem ; 15(20): 4399-4416, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28485455

RESUMEN

Polycyclization reactions are among the most efficient synthetic tools for the synthesis of complex, polycyclic molecules in a single operation from simple starting materials. We report in this manuscript a full account on the discovery and development of a novel cationic polycyclization from readily available ynamides. Simple activation of these building blocks under acidic conditions enables the generation of highly reactive activated keteniminium ions, which triggers an unprecedented cationic polycyclization yielding highly substituted polycyclic nitrogen heterocycles possessing up to seven fused cycles and three contiguous stereocenters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA