Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1868(9): 130660, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38871061

RESUMEN

Caveolin-1 is critical for interacting with the TGF-ß receptor (TGFßR) and EGF receptor (EGFR) signaling, often observed in advanced cancers and tissue fibrosis. However, the mechanism underlying caveolin-1-mediated transactivation of TGFßR and EGFR signaling remains unclear. Therefore, we sought to determine whether caveolin-1 is involved in canonical and non-canonical TGFßR and EGFR signaling transactivation in this study. Methyl-ß-cyclodextrin (MßCD) was used to disrupt the cholesterol-containing membranes domains, and the caveolin-1 scaffolding domain (CSD) peptide was used to mimic the CSD of caveolin-1. Additionally, we transfected the Madin-Darby canine kidney cells with wild-type or phosphorylation-defective caveolin-1. We discovered that tyrosine 14 of caveolin-1 was critical for the negative regulation of TGFßR and EGFR canonical signaling. On the contrary, caveolin-1 inhibited TGF-ß1-induced ERK2 activation independent of tyrosine 14 phosphorylation. Although EGF failed to induce Smad3 phosphorylation in caveolin-1 knockdown cells, it activated Smad3 upon MßCD co-treatment, indicating that caveolin-1 indirectly regulated the non-canonical pathway of EGF. In conclusion, caveolin-1 differentially modulates TGFßR and EGFR signaling. Thus, targeting caveolin-1 is a potential strategy for treating diseases involving TGF-ß1 and EGF signaling.

2.
FEBS J ; 291(5): 1027-1042, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050648

RESUMEN

The primary cilium is an antenna-like organelle protruding from the cell surface that can detect physical and chemical stimuli in the extracellular space to activate specific signaling pathways and downstream gene expressions. Calcium ion (Ca2+ ) signaling regulates a wide spectrum of cellular processes, including fertilization, proliferation, differentiation, muscle contraction, migration, and death. This study investigated the effects of the regulation of cytosolic Ca2+ levels on ciliogenesis using chemical, genetic, and optogenetic approaches. We found that ionomycin-induced Ca2+ influx inhibited ciliogenesis and Ca2+ chelator BATPA-AM-induced Ca2+ depletion promoted ciliogenesis. In addition, store-operated Ca2+ entry and the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) negatively regulated ciliogenesis. Moreover, an optogenetic platform was used to create different Ca2+ oscillation patterns by manipulating lighting parameters, including density, frequency, exposure time, and duration. Light-activated Ca2+ -translocating channelrhodopsin (CatCh) is activated by 470-nm blue light to induce Ca2+ influx. Our results show that high-frequency Ca2+ oscillations decrease ciliogenesis. Furthermore, the inhibition of cilia formation induced by Ca2+ may occur via the activation of Aurora kinase A. Cilia not only induce Ca2+ signaling but also regulate cilia formation by Ca2+ signaling.


Asunto(s)
Canales de Calcio , Señalización del Calcio , Señalización del Calcio/fisiología , Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Retículo Endoplásmico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...