Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell Rep Methods ; 3(9): 100570, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37751688

RESUMEN

Reprogramming somatic cells into pluripotent stem cells (iPSCs) enables the study of systems in vitro. To increase the throughput of reprogramming, we present induction of pluripotency from pooled cells (iPPC)-an efficient, scalable, and reliable reprogramming procedure. Using our deconvolution algorithm that employs pooled sequencing of single-nucleotide polymorphisms (SNPs), we accurately estimated individual donor proportions of the pooled iPSCs. With iPPC, we concurrently reprogrammed over one hundred donor lymphoblastoid cell lines (LCLs) into iPSCs and found strong correlations of individual donors' reprogramming ability across multiple experiments. Individual donors' reprogramming ability remains consistent across both same-day replicates and multiple experimental runs, and the expression of certain immunoglobulin precursor genes may impact reprogramming ability. The pooled iPSCs were also able to differentiate into cerebral organoids. Our procedure enables a multiplex framework of using pooled libraries of donor iPSCs for downstream research and investigation of in vitro phenotypes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Algoritmos , Línea Celular , Genes de Inmunoglobulinas
2.
Hum Genet ; 142(8): 997-999, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37474752
3.
Methods Mol Biol ; 2683: 193-199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37300776

RESUMEN

Recent technological developments have led to widespread applications of large-scale transcriptomics-based sequencing methods to identify genotype-to-cell type associations. Here we describe a fluorescence-activated cell sorting (FACS)-based sequencing method to utilize CRISPR/Cas9 edited mosaic cerebral organoids to identify or validate genotype-to-cell type associations. Our approach is high-throughput and quantitative and uses internal controls to enable comparisons of the results across different antibody markers and experiments.


Asunto(s)
Sistemas CRISPR-Cas , Organoides , Citometría de Flujo/métodos , Genotipo , Organoides/metabolismo
4.
Sci Rep ; 13(1): 10405, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369829

RESUMEN

Mitochondrial (MT) dysfunction has been associated with several neurodegenerative diseases including Alzheimer's disease (AD). While MT-copy number differences have been implicated in AD, the effect of MT heteroplasmy on AD has not been well characterized. Here, we analyzed over 1800 whole genome sequencing data from four AD cohorts in seven different tissue types to determine the extent of MT heteroplasmy present. While MT heteroplasmy was present throughout the entire MT genome for blood samples, we detected MT heteroplasmy only within the MT control region for brain samples. We observed that an MT variant 10398A>G (rs2853826) was significantly associated with overall MT heteroplasmy in brain tissue while also being linked with the largest number of distinct disease phenotypes of all annotated MT variants in MitoMap. Using gene-expression data from our brain samples, our modeling discovered several gene networks involved in mitochondrial respiratory chain and Complex I function associated with 10398A>G. The variant was also found to be an expression quantitative trait loci (eQTL) for the gene MT-ND3. We further characterized the effect of 10398A>G by phenotyping a population of lymphoblastoid cell-lines (LCLs) with and without the variant allele. Examination of RNA sequence data from these LCLs reveal that 10398A>G was an eQTL for MT-ND4. We also observed in LCLs that 10398A>G was significantly associated with overall MT heteroplasmy within the MT control region, confirming the initial findings observed in post-mortem brain tissue. These results provide novel evidence linking MT SNPs with MT heteroplasmy and open novel avenues for the investigation of pathomechanisms that are driven by this pleiotropic disease associated loci.


Asunto(s)
Heteroplasmia , Mitocondrias , Mitocondrias/genética , Polimorfismo de Nucleótido Simple , Fenotipo , Secuencia de Bases , ADN Mitocondrial/genética
5.
Hum Genet ; 142(8): 1281-1291, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36877372

RESUMEN

Cerebral organoids are comprised of diverse cell types found in the developing human brain, and can be leveraged in the identification of critical cell types perturbed by genetic risk variants in common, neuropsychiatric disorders. There is great interest in developing high-throughput technologies to associate genetic variants with cell types. Here, we describe a high-throughput, quantitative approach (oFlowSeq) by utilizing CRISPR-Cas9, FACS sorting, and next-generation sequencing. Using oFlowSeq, we found that deleterious mutations in autism-associated gene KCTD13 resulted in increased proportions of Nestin+ cells and decreased proportions of TRA-1-60+ cells within mosaic cerebral organoids. We further identified that a locus-wide CRISPR-Cas9 survey of another 18 genes in the 16p11.2 locus resulted in most genes with > 2% maximum editing efficiencies for short and long indels, suggesting a high feasibility for an unbiased, locus-wide experiment using oFlowSeq. Our approach presents a novel method to identify genotype-to-cell type imbalances in an unbiased, high-throughput, quantitative manner.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Edición Génica/métodos , Mutación , Organoides , Genotipo
6.
Nat Commun ; 13(1): 3243, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688811

RESUMEN

Cerebral organoids can be used to gain insights into cell type specific processes perturbed by genetic variants associated with neuropsychiatric disorders. However, robust and scalable phenotyping of organoids remains challenging. Here, we perform RNA sequencing on 71 samples comprising 1,420 cerebral organoids from 25 donors, and describe a framework (Orgo-Seq) to integrate bulk RNA and single-cell RNA sequence data. We apply Orgo-Seq to 16p11.2 deletions and 15q11-13 duplications, two loci associated with autism spectrum disorder, to identify immature neurons and intermediate progenitor cells as critical cell types for 16p11.2 deletions. We further applied Orgo-Seq to identify cell type-specific driver genes. Our work presents a quantitative phenotyping framework to integrate multi-transcriptomic datasets for the identification of cell types and cell type-specific co-expressed driver genes associated with neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Deleción Cromosómica , Trastornos de los Cromosomas , Cromosomas Humanos Par 16 , Humanos , Discapacidad Intelectual/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma/genética
7.
Sci Transl Med ; 13(580)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568518

RESUMEN

Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can "cloak" the vector from inducing unwanted immune responses in multiple, but not all, models. This "coupled immunomodulation" strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Inmunidad Innata , Ratones , Porcinos
9.
Nat Methods ; 15(8): 611-616, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013045

RESUMEN

The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional repressor, but inefficiencies in target-gene silencing have limited its utility. Here we describe an improved Cas9 repressor based on the C-terminal fusion of a rationally designed bipartite repressor domain, KRAB-MeCP2, to nuclease-dead Cas9. We demonstrate the system's superiority in silencing coding and noncoding genes, simultaneously repressing a series of target genes, improving the results of single and dual guide RNA library screens, and enabling new architectures of synthetic genetic circuits.


Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Silenciador del Gen , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Genes Sintéticos , Células HEK293 , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , ARN Guía de Kinetoplastida/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
10.
Nat Biotechnol ; 36(6): 540-546, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29786095

RESUMEN

Construction and characterization of large genetic variant libraries is essential for understanding genome function, but remains challenging. Here, we introduce a Cas9-based approach for generating pools of mutants with defined genetic alterations (deletions, substitutions, and insertions) with an efficiency of 80-100% in yeast, along with methods for tracking their fitness en masse. We demonstrate the utility of our approach by characterizing the DNA helicase SGS1 with small tiling deletion mutants that span the length of the protein and a series of point mutations against highly conserved residues in the protein. In addition, we created a genome-wide library targeting 315 poorly characterized small open reading frames (smORFs, <100 amino acids in length) scattered throughout the yeast genome, and assessed which are vital for growth under various environmental conditions. Our strategy allows fundamental biological questions to be investigated in a high-throughput manner with precision.


Asunto(s)
ADN de Hongos/genética , Biblioteca de Genes , Saccharomyces cerevisiae/genética , Secuencia de Bases , Biotecnología , Sistemas CRISPR-Cas , Secuencia Conservada , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Mutación Puntual , RecQ Helicasas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
11.
Genome Med ; 10(1): 31, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29673390

RESUMEN

We describe a method that enables the multiplex screening of a pool of many different donor cell lines. Our method accurately predicts each donor proportion from the pool without requiring the use of unique DNA barcodes as markers of donor identity. Instead, we take advantage of common single nucleotide polymorphisms, whole-genome sequencing, and an algorithm to calculate the proportions from the sequencing data. By testing using simulated and real data, we showed that our method robustly predicts the individual proportions from a mixed-pool of numerous donors, thus enabling the multiplexed testing of diverse donor cells en masse.More information is available at https://pgpresearch.med.harvard.edu/poolseq/.


Asunto(s)
Linfocitos B/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Donantes de Tejidos , Secuenciación Completa del Genoma , Algoritmos , Simulación por Computador , Genoma Humano , Humanos , Polimorfismo de Nucleótido Simple/genética , Tamaño de la Muestra
12.
Nat Neurosci ; 20(9): 1217-1224, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28714951

RESUMEN

We systematically analyzed postzygotic mutations (PZMs) in whole-exome sequences from the largest collection of trios (5,947) with autism spectrum disorder (ASD) available, including 282 unpublished trios, and performed resequencing using multiple independent technologies. We identified 7.5% of de novo mutations as PZMs, 83.3% of which were not described in previous studies. Damaging, nonsynonymous PZMs within critical exons of prenatally expressed genes were more common in ASD probands than controls (P < 1 × 10-6), and genes carrying these PZMs were enriched for expression in the amygdala (P = 5.4 × 10-3). Two genes (KLF16 and MSANTD2) were significantly enriched for PZMs genome-wide, and other PZMs involved genes (SCN2A, HNRNPU and SMARCA4) whose mutation is known to cause ASD or other neurodevelopmental disorders. PZMs constitute a significant proportion of de novo mutations and contribute importantly to ASD risk.


Asunto(s)
Trastorno del Espectro Autista/genética , Bases de Datos Genéticas/tendencias , Variación Genética/genética , Mutación Missense/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Mosaicismo , Cigoto/fisiología
13.
Sci Rep ; 7: 46148, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387241

RESUMEN

The Personal Genome Project (PGP) is an effort to enroll many participants to create an open-access repository of genome, health and trait data for research. However, PGP participants are not enrolled for studying any specific traits and participants choose the phenotypes to disclose. To measure the extent and willingness and to encourage and guide participants to contribute phenotypes, we developed an algorithm to score and rank the phenotypes and participants of the PGP. The scoring algorithm calculates the participation index (P-index) for every participant, where 0 indicates no reported phenotypes and 100 indicate complete phenotype reporting. We calculated the P-index for all 5,015 participants in the PGP and they ranged from 0 to 96.7. We found that participants mainly have either high scores (P-index > 90, 29.5%) or low scores (P-index < 10, 57.8%). While, there are significantly more males than female participants (1,793 versus 1,271), females tend to have on average higher P-indexes (P = 0.015). We also reported the P-indexes of participants based on demographics and states like Missouri and Massachusetts have better P-indexes than states like Utah and Minnesota. The P-index can therefore be used as an unbiased way to measure and rank participant's phenotypic contribution towards the PGP.


Asunto(s)
Fenotipo , Algoritmos , Estudios de Cohortes , Enfermedad , Femenino , Genoma Humano , Geografía , Humanos , Masculino , Carácter Cuantitativo Heredable , Encuestas y Cuestionarios , Estados Unidos
14.
Am J Hum Genet ; 96(5): 695-708, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25865494

RESUMEN

Human height is a composite measurement, reflecting the sum of leg, spine, and head lengths. Many common variants influence total height, but the effects of these or other variants on the components of height (body proportion) remain largely unknown. We studied sitting height ratio (SHR), the ratio of sitting height to total height, to identify such effects in 3,545 African Americans and 21,590 individuals of European ancestry. We found that SHR is heritable: 26% and 39% of the total variance of SHR can be explained by common variants in European and African Americans, respectively, and global European admixture is negatively correlated with SHR in African Americans (r(2) ≈ 0.03). Six regions reached genome-wide significance (p < 5 × 10(-8)) for association with SHR and overlapped biological candidate genes, including TBX2 and IGFBP3. We found that 130 of 670 height-associated variants are nominally associated (p < 0.05) with SHR, more than expected by chance (p = 5 × 10(-40)). At these 130 loci, the height-increasing alleles are associated with either a decrease (71 loci) or increase (59 loci) in SHR, suggesting that different height loci disproportionally affect either leg length or spine/head length. Pathway analyses via DEPICT revealed that height loci affecting SHR, and especially those affecting leg length, show enrichment of different biological pathways (e.g., bone/cartilage/growth plate pathways) than do loci with no effect on SHR (e.g., embryonic development). These results highlight the value of using a pair of related but orthogonal phenotypes, in this case SHR with height, as a prism to dissect the biology underlying genetic associations in polygenic traits and diseases.


Asunto(s)
Estatura/genética , Estudio de Asociación del Genoma Completo , Herencia Multifactorial/genética , Adulto , Negro o Afroamericano/genética , Mapeo Cromosómico , Femenino , Humanos , Huesos de la Pierna/crecimiento & desarrollo , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Población Blanca/genética
15.
Nat Commun ; 6: 5890, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25597830

RESUMEN

The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Programas Informáticos
16.
Am J Hum Genet ; 95(5): 509-20, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439097

RESUMEN

Rare-variant association studies in common, complex diseases are customarily conducted under an additive risk model in both single-variant and burden testing. Here, we describe a method to improve detection of rare recessive variants in complex diseases termed RAFT (recessive-allele-frequency-based test). We found that RAFT outperforms existing approaches when the variant influences disease risk in a recessive manner on simulated data. We then applied our method to 1,791 Finnish individuals with type 2 diabetes (T2D) and 2,657 matched control subjects. In BBS10, we discovered a rare variant (c.1189A>G [p.Ile397Val]; rs202042386) that confers risk of T2D in a recessive state (p = 1.38 × 10(-6)) and would be missed by conventional methods. Testing of this variant in an established in vivo zebrafish model confirmed the variant to be pathogenic. Taken together, these data suggest that RAFT can effectively reveal rare recessive contributions to complex diseases overlooked by conventional association tests.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Genes Recesivos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Chaperoninas del Grupo II/genética , Modelos Genéticos , Obesidad/genética , Animales , Chaperoninas , Finlandia , Frecuencia de los Genes , Humanos , Funciones de Verosimilitud , Oportunidad Relativa , Pez Cebra
17.
PLoS Genet ; 10(7): e1004494, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25078778

RESUMEN

Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5-5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10⁻8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10⁻¹¹7). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10⁻4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.


Asunto(s)
Efecto Fundador , Enfermedades Genéticas Congénitas , Flujo Genético , Genética de Población , Exoma/genética , Femenino , Finlandia , Frecuencia de los Genes , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Fenotipo , Población Blanca
18.
Am J Hum Genet ; 94(3): 437-52, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24607388

RESUMEN

In most complex diseases, much of the heritability remains unaccounted for by common variants. It has been postulated that lower-frequency variants contribute to the remaining heritability. Here, we describe a method to test for polygenic inheritance from lower-frequency variants by using GWAS summary association statistics. We explored scenarios with many causal low-frequency variants and showed that there is more power to detect risk variants than to detect protective variants, resulting in an increase in the ratio of detected risk to protective variants (R/P ratio). Such an excess can also occur if risk variants are present and kept at lower frequencies because of negative selection. The R/P ratio can be falsely elevated because of reasons unrelated to polygenic inheritance, such as uneven sample sizes or asymmetric population stratification, so precautions to correct for these confounders are essential. We tested our method on published GWAS results and observed a strong signal in some diseases (schizophrenia and type 2 diabetes) but not others. We also explored the shared genetic component in overlapping phenotypes related to inflammatory bowel disease (Crohn disease [CD] and ulcerative colitis [UC]) and diabetic nephropathy (macroalbuminuria and end-stage renal disease [ESRD]). Although the signal was still present when both CD and UC were jointly analyzed, the signal was lost when macroalbuminuria and ESRD were jointly analyzed, suggesting that these phenotypes should best be studied separately. Thus, our method may also help guide the design of future genetic studies of various traits and diseases.


Asunto(s)
Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Herencia Multifactorial , Albuminuria/genética , Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Fallo Renal Crónico/genética , Trastornos Mentales/genética , Modelos Estadísticos , Obesidad/genética , Oportunidad Relativa , Fenotipo , Riesgo
19.
Hum Mol Genet ; 21(23): 5193-201, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22914739

RESUMEN

Previous meta-analysis of genome-wide association (GWA) studies has identified 180 loci that influence adult height. However, each GWA locus typically comprises a set of contiguous genes, only one of which presumably modulates height. We reasoned that many of the causative genes within these loci influence height because they are expressed in and function in the growth plate, a cartilaginous structure that causes bone elongation and thus determines stature. Therefore, we used expression microarray studies of mouse and rat growth plate, human disease databases and a mouse knockout phenotype database to identify genes within the GWAS loci that are likely required for normal growth plate function. Each of these approaches identified significantly more genes within the GWA height loci than at random genomic locations (P < 0.0001 each), supporting the validity of the approach. The combined analysis strongly implicates 78 genes in growth plate function, including multiple genes that participate in PTHrP-IHH, BMP and CNP signaling, and many genes that have not previously been implicated in the growth plate. Thus, this analysis reveals a large number of novel genes that regulate human growth plate chondrogenesis and thereby contribute to the normal variations in human adult height. The analytic approach developed for this study may be applied to GWA studies for other common polygenic traits and diseases, thus providing a new general strategy to identify causative genes within GWA loci and to translate genetic associations into mechanistic biological insights.


Asunto(s)
Estatura/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Placa de Crecimiento/metabolismo , Animales , Biología Computacional/métodos , Genómica , Placa de Crecimiento/crecimiento & desarrollo , Humanos , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados
20.
PLoS Genet ; 7(12): e1002439, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22242009

RESUMEN

Common genetic variants have been shown to explain a fraction of the inherited variation for many common diseases and quantitative traits, including height, a classic polygenic trait. The extent to which common variation determines the phenotype of highly heritable traits such as height is uncertain, as is the extent to which common variation is relevant to individuals with more extreme phenotypes. To address these questions, we studied 1,214 individuals from the top and bottom extremes of the height distribution (tallest and shortest ∼1.5%), drawn from ∼78,000 individuals from the HUNT and FINRISK cohorts. We found that common variants still influence height at the extremes of the distribution: common variants (49/141) were nominally associated with height in the expected direction more often than is expected by chance (p<5×10⁻²8), and the odds ratios in the extreme samples were consistent with the effects estimated previously in population-based data. To examine more closely whether the common variants have the expected effects, we calculated a weighted allele score (WAS), which is a weighted prediction of height for each individual based on the previously estimated effect sizes of the common variants in the overall population. The average WAS is consistent with expectation in the tall individuals, but was not as extreme as expected in the shortest individuals (p<0.006), indicating that some of the short stature is explained by factors other than common genetic variation. The discrepancy was more pronounced (p<10⁻6) in the most extreme individuals (height<0.25 percentile). The results at the extreme short tails are consistent with a large number of models incorporating either rare genetic non-additive or rare non-genetic factors that decrease height. We conclude that common genetic variants are associated with height at the extremes as well as across the population, but that additional factors become more prominent at the shorter extreme.


Asunto(s)
Alelos , Estatura/genética , Herencia Multifactorial/genética , Adolescente , Adulto , Anciano , Estudios de Cohortes , Femenino , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...