Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 8551, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595742

RESUMEN

Maize (Zea mays L.) is the leading cereal crop and staple food in many parts of the world. This study aims to develop nutrient-rich maize genotypes by incorporating crtRB1 and o2 genes associated with increased ß-carotene, lysine, and tryptophan levels. UMI1200 and UMI1230, high quality maize inbreds, are well-adapted to tropical and semi-arid regions in India. However, they are deficient in ß-carotene, lysine, and tryptophan. We used the concurrent stepwise transfer of genes by marker-assisted backcross breeding (MABB) scheme to introgress crtRB1 and o2 genes. In each generation (from F1, BC1F1-BC3F1, and ICF1-ICF3), foreground and background selections were carried out using gene-linked (crtRB1 3'TE and umc1066) and genome-wide simple sequence repeats (SSR) markers. Four independent BC3F1 lines of UMI1200 × CE477 (Cross-1), UMI1200 × VQL1 (Cross-2), UMI1230 × CE477 (Cross-3), and UMI1230 × VQL1 (Cross-4) having crtRB1 and o2 genes and 87.45-88.41% of recurrent parent genome recovery (RPGR) were intercrossed to generate the ICF1-ICF3 generations. Further, these gene pyramided lines were examined for agronomic performance and the ß-carotene, lysine, and tryptophan contents. Six ICF3 lines (DBT-IC-ß1σ4-4-8-8, DBT-IC-ß1σ4-9-21-21, DBT-IC-ß1σ4-10-1-1, DBT-IC-ß2σ5-9-51-51, DBT-IC-ß2σ5-9-52-52 and DBT-IC-ß2σ5-9-53-53) possessing crtRB1 and o2 genes showed better agronomic performance (77.78-99.31% for DBT-IC-ß1σ4 population and 85.71-99.51% for DBT-IC-ß2σ5 population) like the recurrent parents and ß-carotene (14.21-14.35 µg/g for DBT-IC-ß1σ4 and 13.28-13.62 µg/g for DBT-IC-ß2σ5), lysine (0.31-0.33% for DBT-IC-ß1σ4 and 0.31-0.34% for DBT-IC-ß2σ5), and tryptophan (0.079-0.082% for DBT-IC-ß1σ4 and 0.078-0.083% for DBT-IC-ß2σ5) levels on par with that of the donor parents. In the future, these improved lines could be developed as a cultivar for various agro-climatic zones and also as good genetic materials for maize nutritional breeding programs.


Asunto(s)
Zea mays , beta Caroteno , Marcadores Genéticos , Lisina/genética , Fitomejoramiento , Triptófano/genética , Zea mays/genética , beta Caroteno/genética
2.
Genes (Basel) ; 12(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069791

RESUMEN

In the North Eastern Himalayan region (NEHR) of India, maize is an important food crop. The local people cultivate the maize landraces and consume them as food. However, these landraces are deficient in ß-carotene content. Thus, we aimed to incorporate the crtRB1 gene from UMI285ß+ into the genetic background of the NEHR maize landrace, Yairipok Chujak (CAUM66), and thereby enhance the ß-carotene content through marker-assisted backcrossing (MABC). In this regard, we backcrossed and screened BC1F1 and BC2F1 plants possessing the heterozygous allele for crtRB1 and then screened with 106 polymorphic simple sequence repeat (SSR) markers. The plants having maximum recurrent parent genome recovery (RPGR) were selected in each generation and selfed to produce BC2F2 seeds. In the BC2F2 generation, four plants (CAUM66-54-9-12-2, CAUM66-54-9-12-11, CAUM66-54-9-12-13, and CAUM66-54-9-12-24) having homozygous crtRB1-favorable allele with maximum RPGR (86.74-90.16%) were selected and advanced to BC2F3. The four selected plants were selfed to produce BC2F3 and then evaluated for agronomic traits and ß-carotene content. The agronomic performance of the four lines was similar (78.83-99.44%) to that of the recurrent parent, and ß-carotene content (7.541-8.711 µg/g) was on par with the donor parent. Our study is the first to improve the ß-carotene content in NEHR maize landrace through MABC. The newly developed lines could serve as potential resources to further develop nutrition-rich maize lines and could provide genetic stock for use in breeding programs.


Asunto(s)
Genes de Plantas/genética , Marcadores Genéticos/genética , Zea mays/genética , beta Caroteno/genética , Alelos , Endogamia/métodos , India , Repeticiones de Microsatélite/genética , Fenotipo , Fitomejoramiento/métodos , Polimorfismo Genético/genética
3.
Front Nutr ; 7: 134, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154974

RESUMEN

Vitamin A deficiency (VAD) is a global health problem; many people around the world, especially children and pregnant women, are VAD deficient or insufficient. Maize is known as an important source of provitamin A for humans. Hence, enhancement of provitamin A carotenoids (pVAC) in maize varieties through breeding or biofortification is a good option for alleviating VAD in developing countries, especially India. So far, numerous maize hybrids have been developed in India. Among them, CO6, derived from UMI1200 × UMI1230, is a popular maize hybrid and adapted to different agro-climatic zones of India, especially Tamil Nadu, a southern state of India. However, CO6 is deficient for pVAC carotenoid ß-carotene. Thus, the objectives of this study were to increase the ß-carotene concentration in UMI1200 and UMI1230 and generate the ß-carotene enriched hybrids through marker-assisted backcross breeding (MABB). For this purpose, the maize genotype HP467-15 was used as the donor for transferring the ß-carotene gene, crtRB1, into UMI1200 and UMI1230. In the MABB scheme, we used one gene-specific marker (crtRB1 3'TE) and 214 simples sequence repeat (SSR) markers for foreground and background selection, respectively. As a result, six improved lines with recurrent parent genome recovery (RPGR) ranging from 90.24 to 92.42%, along with good agronomic performance, were generated. The ß-carotene concentration of the improved lines ranged from 7.056 to 9.232 µg/g. Furthermore, five hybrid combinations were generated using improved lines and evaluated in a comparative yield trial (CYT) and multi-location trials (MLT) along with the original hybrid CO6 and commercial hybrids. It was revealed that ACM-M13-002 was a superior hybrid with a 7.3-fold increase in ß-carotene concentration and with a comparable yield to CO6. In summary, the improved maize inbreds can be used as possible donors for the development of ß-carotene-rich cultivars in maize breeding programs and the ß-carotene enriched hybrid developed in this study will hold great promise for food and nutritional security.

4.
Physiol Mol Biol Plants ; 26(9): 1925-1930, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32943826

RESUMEN

Maize is the predominant food source for the world population, but lack of lysine and tryptophan in maize endosperm cannot fulfill the nutritional requirements of humans. Hence, the improvement of lysine and tryptophan content is the ultimate goal of maize biofortification programs. In the present study, the marker-assisted backcross (MABC) breeding strategy was used to enhance the lysine and tryptophan content of the elite maize inbred line UMI1230 by introgressing opaque 2 (o2) gene from the VQL1. During the transfer of the gene into UMI1230, SSR marker umc1066 tightly associated with o2 used for foreground selection. Background recovery was estimated using 168 SSR markers. Phenotype screening for morphological traits was adopted to choose plants parallel to UMI1230. As a result, four BC2F3 improved lines (DBT5-1-14/25-5/25-8/25-8/25, DBT5-1-14/25-5/25-8/25-7/25, DBT5-1-14/25-5/25-8/25-10/25 and DBT5-1-14/25-5/25-8/25-12/25) with o2 were developed. The improved line's background genome recovery varied between 90.60 and 94.80%. Also, the improved lines had better agronomic performance along with increased lysine (0.311-0.331%) and tryptophan (0.040-0.048%) contents. In summary, the MABC breeding strategy has successfully improved the levels of lysine and tryptophan in UMI1230 without affecting agronomic performance. The improved line's hold great potential as donors in biofortification programs in maize.

5.
Front Genet ; 10: 859, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611905

RESUMEN

Maize is an excellent nutritional source and is consumed as a staple food in different parts of the world, including India. Developing a maize genotype with a combination of higher lysine and tryptophan, along with ß-carotene, can help alleviate the problem of protein-energy malnutrition (PEM) and vitamin A deficiency (VAD). This study is aimed at improving lysine and tryptophan content by transferring opaque-2 (o2) gene from donor HKI163 to ß-carotene-rich inbred lines viz., UMI1200ß+ and UMI1230ß+. For this purpose, F1, BC1F1, BC2F1, BC2F2, and BC2F3 plants were developed using an o2 line HKI163 and two ß-carotene-rich inbred lines, UMI1200ß+ and UMI1230ß+, as the parents. Foreground selection using the associated marker umc1066 for the o2 gene and the marker crtRB1 3'TE for the crtRB1 gene was used to select the target genes. A total of 236 simple sequence repeat (SSR) markers distributed evenly across the maize genome were employed for the background selection. To fix the crtRB1 allele in the BC1F1 stage, individual plants homozygous at the crtRB1 locus and heterozygous at the o2 locus were selected and used for backcrossing to produce BC2F1 plants. Furthermore, the selected heterozygous BC2F1 plants from both crosses were selfed to obtain the BC2F2 plants, which were then selected for the target gene and selfed to generate the BC2F3 lines. From each cross, five improved lines with homozygous marker alleles for the crtRB1 and o2 genes with a recurrent parent genome (RPG) recovery ranging from 86.75 to 91.21% in UMI1200ß+×HKI163 and 80.00 to 90.08% in UMI1230ß+×HKI163 were identified. The improved lines had good agronomic performance and possessed high lysine (0.294-0.332%), tryptophan (0.073-0.081%), and ß-carotene (6.12-7.38 µg/g) content. These improved lines can be used as genetic resources for maize improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...