Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 2: 835-50, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21037198

RESUMEN

Gene duplication is probably the most important mechanism for generating new gene functions. However, gene duplication has been overlooked as a potentially effective way to resolve genetic conflicts. Here, we analyze the entire set of Drosophila melanogaster nuclearly encoded mitochondrial duplicate genes and show that both RNA- and DNA-mediated mitochondrial gene duplications exhibit an unexpectedly high rate of relocation (change in location between parental and duplicated gene) as well as an extreme tendency to avoid the X chromosome. These trends are likely related to our observation that relocated genes tend to have testis-specific expression. We also infer that these trends hold across the entire Drosophila genus. Importantly, analyses of gene ontology and functional interaction networks show that there is an overrepresentation of energy production-related functions in these mitochondrial duplicates. We discuss different hypotheses to explain our results and conclude that our findings substantiate the hypothesis that gene duplication for male germline function is likely a mechanism to resolve intralocus sexually antagonistic conflicts that we propose are common in testis. In the case of nuclearly encoded mitochondrial duplicates, our hypothesis is that past sexually antagonistic conflict related to mitochondrial energy function in Drosophila was resolved by gene duplication.


Asunto(s)
Núcleo Celular/genética , Conflicto Psicológico , Drosophila melanogaster/genética , Duplicación de Gen , Genes de Insecto , Genes Mitocondriales , Conducta Sexual Animal , Animales , ADN Mitocondrial/genética , Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Metabolismo Energético , Evolución Molecular , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Genoma de los Insectos , Masculino , ARN/genética , Especificidad de la Especie , Espermatogénesis , Testículo/metabolismo , Testículo/fisiología , Cromosoma X
2.
CBE Life Sci Educ ; 9(1): 55-69, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20194808

RESUMEN

Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students.


Asunto(s)
Investigación Genética , Genómica/educación , Laboratorios , Universidades , Animales , Docentes , Estudiantes/psicología
3.
Int J Syst Evol Microbiol ; 56(Pt 7): 1475-1484, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16825615

RESUMEN

A Gram-positive, spore-forming bacillus was isolated from a sample taken from an approximately 2000-year-old shaft-tomb located in the Mexican state of Jalisco, near the city of Tequila. Tentative identification using conventional biochemical analysis consistently identified the isolate as Bacillus subtilis. DNA isolated from the tomb isolate, strain 10b(T), and closely related species was used to amplify a Bacillus-specific portion of the highly conserved 16S rRNA gene and an internal region of the superoxide dismutase gene (sodA(int)). Trees derived from maximum-likelihood methods applied to the sodA(int) sequences yielded non-zero branch lengths between strain 10b(T) and its closest relative, whereas a comparison of a Bacillus-specific 546 bp amplicon of the 16S rRNA gene demonstrated 99 % similarity with B. subtilis. Although the 16S rRNA gene sequences of strain 10b(T) and B. subtilis were 99 % similar, PFGE of NotI-digested DNA of strain 10b(T) revealed a restriction profile that was considerably different from those of B. subtilis and other closely related species. Whereas qualitative differences in whole-cell fatty acids were not observed, significant quantitative differences were found to exist between strain 10b(T) and each of the other closely related Bacillus species examined. In addition, DNA-DNA hybridization studies demonstrated that strain 10b(T) had a relatedness value of less than 70 % with B. subtilis and other closely related species. Evidence from the sodA(int) sequences, whole-cell fatty acid profiles and PFGE analysis, together with results from DNA-DNA hybridization studies, justify the classification of strain 10b(T) as representing a distinct species, for which the name Bacillus tequilensis sp. nov. is proposed. The type strain is 10b(T) (=ATCC BAA-819(T)=NCTC 13306(T)).


Asunto(s)
Bacillus/clasificación , Bacillus/aislamiento & purificación , Microbiología del Suelo , Arqueología , Bacillus/química , Bacillus/fisiología , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Entierro , Dermatoglifia del ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Desoxirribonucleasas de Localización Especificada Tipo II , Electroforesis en Gel de Campo Pulsado , Ácidos Grasos/análisis , Ácidos Grasos/aislamiento & purificación , Genes de ARNr , México , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA