Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Cell Biochem ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747370

RESUMEN

Lipid droplets are organelles with unique spherical structures. They consist of a hydrophobic neutral lipid core that varies depending on the cell type and tissue. These droplets are surrounded by phospholipid monolayers, along with heterogeneous proteins responsible for neutral lipid synthesis and metabolism. Additionally, there are specialized lipid droplet-associated surface proteins. Recent evidence suggests that proteins from the perilipin family (PLIN) are associated with the surface of lipid droplets and are involved in their formation. These proteins have specific roles in hepatic lipid droplet metabolism, such as protecting the lipid droplets from lipase action and maintaining a balance between lipid storage and utilization in specific cells. Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of lipid droplets in more than 5% of the hepatocytes. This accumulation can progress into metabolic dysfunction-associated steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The accumulation of hepatic lipid droplets in the liver is associated with the progression of MASLD and other diseases such as sarcopenic obesity. Therefore, it is crucial to understand the role of perilipins in this accumulation, as these proteins are key targets for developing novel therapeutic strategies. This comprehensive review aims to summarize the structure and characteristics of PLIN proteins, as well as their pathogenic role in the development of hepatic steatosis and fatty liver diseases.

2.
Magn Reson Med ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38733066

RESUMEN

PURPOSE: To present and assess an outlier mitigation method that makes free-running volumetric cardiovascular MRI (CMR) more robust to motion. METHODS: The proposed method, called compressive recovery with outlier rejection (CORe), models outliers in the measured data as an additive auxiliary variable. We enforce MR physics-guided group sparsity on the auxiliary variable, and jointly estimate it along with the image using an iterative algorithm. For evaluation, CORe is first compared to traditional compressed sensing (CS), robust regression (RR), and an existing outlier rejection method using two simulation studies. Then, CORe is compared to CS using seven three-dimensional (3D) cine, 12 rest four-dimensional (4D) flow, and eight stress 4D flow imaging datasets. RESULTS: Our simulation studies show that CORe outperforms CS, RR, and the existing outlier rejection method in terms of normalized mean square error and structural similarity index across 55 different realizations. The expert reader evaluation of 3D cine images demonstrates that CORe is more effective in suppressing artifacts while maintaining or improving image sharpness. Finally, 4D flow images show that CORe yields more reliable and consistent flow measurements, especially in the presence of involuntary subject motion or exercise stress. CONCLUSION: An outlier rejection method is presented and tested using simulated and measured data. This method can help suppress motion artifacts in a wide range of free-running CMR applications.

3.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673873

RESUMEN

The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).


Asunto(s)
Oxidorreductasas Intramoleculares , Lipocalinas , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Lipocalinas/genética , Neoplasias/metabolismo , Relación Estructura-Actividad , Animales
4.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339160

RESUMEN

Obesity or excessive weight gain is identified as the most important and significant risk factor in the development and progression of type 2 diabetes mellitus (DM) in all age groups. It has reached pandemic dimensions, making the treatment of obesity crucial in the prevention and management of type 2 DM worldwide. Multiple clinical studies have demonstrated that moderate and sustained weight loss can improve blood glucose levels, insulin action and reduce the need for diabetic medications. A combined approach of diet, exercise and lifestyle modifications can successfully reduce obesity and subsequently ameliorate the ill effects and deadly complications of DM. This approach also helps largely in the prevention, control and remission of DM. Obesity and DM are chronic diseases that are increasing globally, requiring new approaches to manage and prevent diabetes in obese individuals. Therefore, it is essential to understand the mechanistic link between the two and design a comprehensive approach to increase life expectancy and improve the quality of life in patients with type 2 DM and obesity. This literature review provides explicit information on the clinical definitions of obesity and type 2 DM, the incidence and prevalence of type 2 DM in obese individuals, the indispensable role of obesity in the pathophysiology of type 2 DM and their mechanistic link. It also discusses clinical studies and outlines the recent management approaches for the treatment of these associated conditions. Additionally, in vivo studies on obesity and type 2 DM are discussed here as they pave the way for more rigorous development of therapeutic approaches.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Calidad de Vida , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/terapia , Factores de Riesgo , Pérdida de Peso
5.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256181

RESUMEN

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing worldwide at an alarming pace, due to an increase in obesity, sedentary and unhealthy lifestyles, and unbalanced dietary habits. MASLD is a unique, multi-factorial condition with several phases of progression including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Sterol element binding protein 1c (SREBP1c) is the main transcription factor involved in regulating hepatic de novo lipogenesis. This transcription factor is synthesized as an inactive precursor, and its proteolytic maturation is initiated in the membrane of the endoplasmic reticulum upon stimulation by insulin. SREBP cleavage activating protein (SCAP) is required as a chaperon protein to escort SREBP from the endoplasmic reticulum and to facilitate the proteolytic release of the N-terminal domain of SREBP into the Golgi. SCAP inhibition prevents activation of SREBP and inhibits the expression of genes involved in triglyceride and fatty acid synthesis, resulting in the inhibition of de novo lipogenesis. In line, previous studies have shown that SCAP inhibition can resolve hepatic steatosis in animal models and intensive research is going on to understand the effects of SCAP in the pathogenesis of human disease. This review focuses on the versatile roles of SCAP/SREBP regulation in de novo lipogenesis and the structure and molecular features of SCAP/SREBP in the progression of hepatic steatosis. In addition, recent studies that attempt to target the SCAP/SREBP axis as a therapeutic option to interfere with MASLD are discussed.


Asunto(s)
Hígado Graso , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Hepáticas , Proteínas de la Membrana , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Humanos , Metabolismo de los Lípidos , Lipogénesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética
6.
Bioorg Med Chem Lett ; 99: 129624, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272190

RESUMEN

A structurally novel class of benzo- or pyrido-fused 1,3-dihydro-2H-imidazole-2-imines was designed and evaluated in an inositol phosphate accumulation assay for Gq signaling to measure agonistic activation of the orexin receptor type 2 (OX2R). These compounds were synthesized in 4-9 steps overall from readily available starting materials. Analogs that contain a stereogenic methyl or cyclopropyl substituent at the benzylic center, and a correctly configured alkyl ether, alkoxyalkyl ether, cyanoalkyl ether, or α-hydroxyacetamido substituted homobenzylic sidechain were identified as the most potent activators of OX2R coupled Gq signaling. Our results also indicate that agonistic activity was stereospecific at both the benzylic and homobenzylic stereogenic centra. We identified methoxyethoxy-substituted pyrido-fused dihydroimidazolimine analog 63c containing a stereogenic benzylic methyl group was the most potent agonist, registering a respectable EC50 of 339 nM and a maximal response (Emax) of 96 % in this assay. In vivo pharmacokinetic analysis indicated good brain exposure for several analogs. Our combined results provide important information towards a structurally novel class of orexin receptor agonists distinct from current chemotypes.


Asunto(s)
Imidazoles , Iminas , Receptores de Orexina/agonistas , Iminas/farmacología , Imidazoles/farmacología , Piridinas , Éteres
7.
JACC Cardiovasc Imaging ; 16(5): 609-624, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36752429

RESUMEN

BACKGROUND: Myocardial injury in patients with COVID-19 and suspected cardiac involvement is not well understood. OBJECTIVES: The purpose of this study was to characterize myocardial injury in a multicenter cohort of patients with COVID-19 and suspected cardiac involvement referred for cardiac magnetic resonance (CMR). METHODS: This retrospective study consisted of 1,047 patients from 18 international sites with polymerase chain reaction-confirmed COVID-19 infection who underwent CMR. Myocardial injury was characterized as acute myocarditis, nonacute/nonischemic, acute ischemic, and nonacute/ischemic patterns on CMR. RESULTS: In this cohort, 20.9% of patients had nonischemic injury patterns (acute myocarditis: 7.9%; nonacute/nonischemic: 13.0%), and 6.7% of patients had ischemic injury patterns (acute ischemic: 1.9%; nonacute/ischemic: 4.8%). In a univariate analysis, variables associated with acute myocarditis patterns included chest discomfort (OR: 2.00; 95% CI: 1.17-3.40, P = 0.01), abnormal electrocardiogram (ECG) (OR: 1.90; 95% CI: 1.12-3.23; P = 0.02), natriuretic peptide elevation (OR: 2.99; 95% CI: 1.60-5.58; P = 0.0006), and troponin elevation (OR: 4.21; 95% CI: 2.41-7.36; P < 0.0001). Variables associated with acute ischemic patterns included chest discomfort (OR: 3.14; 95% CI: 1.04-9.49; P = 0.04), abnormal ECG (OR: 4.06; 95% CI: 1.10-14.92; P = 0.04), known coronary disease (OR: 33.30; 95% CI: 4.04-274.53; P = 0.001), hospitalization (OR: 4.98; 95% CI: 1.55-16.05; P = 0.007), natriuretic peptide elevation (OR: 4.19; 95% CI: 1.30-13.51; P = 0.02), and troponin elevation (OR: 25.27; 95% CI: 5.55-115.03; P < 0.0001). In a multivariate analysis, troponin elevation was strongly associated with acute myocarditis patterns (OR: 4.98; 95% CI: 1.76-14.05; P = 0.003). CONCLUSIONS: In this multicenter study of patients with COVID-19 with clinical suspicion for cardiac involvement referred for CMR, nonischemic and ischemic patterns were frequent when cardiac symptoms, ECG abnormalities, and cardiac biomarker elevations were present.


Asunto(s)
COVID-19 , Enfermedad de la Arteria Coronaria , Lesiones Cardíacas , Miocarditis , Humanos , Miocarditis/patología , COVID-19/complicaciones , Estudios Retrospectivos , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética , Troponina , Espectroscopía de Resonancia Magnética
8.
Magn Reson Med ; 87(3): 1595-1604, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34719067

RESUMEN

PURPOSE: To develop an automatic method for selecting heartbeats with consistent respiratory phase to improve accuracy of cardiac function quantification in real-time (RT) cardiac MRI. METHODS: The respiratory signal is extracted by a principal component analysis method from RT cine images. Then, a two-step procedure is used to determine the directionality (sign) of the respiratory signal. With the motion in a manually selected region-of-interest as a reference, the quality of the extracted respiratory signal is assessed using multislice RT cine data from 11 volunteers and 10 patients. In addition, the impact of selecting heartbeats with consistent respiratory phase on the cardiac function quantification is evaluated. RESULTS: The extracted respiratory signal using the proposed method exhibits a high, positive correlation with the reference in all cases and is more robust compared to a recently proposed method. Also, for right ventricular function quantification, selecting heartbeats at expiratory position improves agreement between RT cine and breath-held reference. CONCLUSION: The proposed method enables fully automatic extraction and directionality determinations of respiratory signal from RT cardiac cine images, allowing accurate cardiac function quantification.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Cinemagnética , Contencion de la Respiración , Corazón/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
9.
BMJ Case Rep ; 14(4)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33858905

RESUMEN

We present the case of a baby boy, with antenatal finding of bilateral enlarged echogenic lungs, who developed severe postnatal respiratory failure. Two important differential diagnoses, which have an impact on antenatal and postnatal management, are discussed. Fetal ultrasound, MRI and postmortem MRI images are presented and findings correlated with the autopsy findings.


Asunto(s)
Malformación Adenomatoide Quística Congénita del Pulmón , Insuficiencia Respiratoria , Femenino , Humanos , Lactante , Recien Nacido Extremadamente Prematuro , Recién Nacido , Pulmón/diagnóstico por imagen , Masculino , Embarazo , Ultrasonografía Prenatal
10.
J Lipid Res ; 62: 100031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32859645

RESUMEN

Genetic variants that increase the risk of fatty liver disease and cirrhosis have recently been identified in the proximity of membrane-bound O-acyltransferase domain-containing 7 (MBOAT7). To elucidate the link between these variants and fatty liver disease, we characterized Mboat7 liver-specific KO mice (Mboat7 LSKO). Chow-fed Mboat7 LSKO mice developed fatty livers and associated liver injury. Lipidomic analysis of liver using MS revealed a pronounced reduction in 20-carbon PUFA content in phosphatidylinositols (PIs) but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis because of activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage-activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap-only hepatic KO, showing that increased SREBP-1c processing is required for Mboat7-induced steatosis. This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis.


Asunto(s)
Proteína 1 de Unión a los Elementos Reguladores de Esteroles
11.
Magn Reson Imaging ; 61: 233-238, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31150812

RESUMEN

PURPOSE: To develop a non-invasive MRI-based methodology to visually and quantitatively assess the impact of head and chest rotations on the airway caliber. METHODS: An MRI table set-up was developed for independent rotations of the head and chest along B0 field and tested for feasibility using phantom scans. The accuracy of the head and chest rotations was validated with ten volunteer scans. A 3T MRI protocol was optimized to image the regions of interest (ROIs) that were the retropalatal (RP) and retroglossal (RG) sections of the upper airway. A workflow for data analysis was developed to assess the changes of the airway caliber following the independent head and chest rotations. RESULTS: A prototype MRI table setup was established with two separate plates each supporting and rotating the head or chest independently. Subject positioning and image acquisition were finished within seven minutes for each position. Thus, each subject MRI was set up with seven positions and completed for less than one hour. The implemented angles were within 0.3-degree deviation from the targeted angles. The data analysis workflow provided 2D and 3D visualization and quantification with the measurements of cross-sectional area, lateral and anterior-posterior distances of the ROIs. Sharp contrast of the airway and its surrounding tissues facilitated an automatic approach to ROI placement to minimize subjectivity. CONCLUSIONS: The 3T MRI data acquisition and analysis methodology could reliably assess the impact of head and chest rotations on the upper airway caliber to identify the optimal position for obstructive sleep apnea patients.


Asunto(s)
Imagen por Resonancia Magnética , Monitoreo Fisiológico/métodos , Apnea Obstructiva del Sueño/diagnóstico por imagen , Adulto , Índice de Masa Corporal , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Posicionamiento del Paciente , Apnea Obstructiva del Sueño/fisiopatología , Adulto Joven
12.
Clin Epigenetics ; 7: 57, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052355

RESUMEN

BACKGROUND: Tumour metastasis to the brain is a common and deadly development in certain cancers; 18-30 % of breast tumours metastasise to the brain. The contribution that gene silencing through epigenetic mechanisms plays in these metastatic tumours is not well understood. RESULTS: We have carried out a bioinformatic screen of genome-wide breast tumour methylation data available at The Cancer Genome Atlas (TCGA) and a broad literature review to identify candidate genes that may contribute to breast to brain metastasis (BBM). This analysis identified 82 candidates. We investigated the methylation status of these genes using Combined Bisulfite and Restriction Analysis (CoBRA) and identified 21 genes frequently methylated in BBM. We have identified three genes, GALNT9, CCDC8 and BNC1, that were frequently methylated (55, 73 and 71 %, respectively) and silenced in BBM and infrequently methylated in primary breast tumours. CCDC8 was commonly methylated in brain metastases and their associated primary tumours whereas GALNT9 and BNC1 were methylated and silenced only in brain metastases, but not in the associated primary breast tumours from individual patients. This suggests differing roles for these genes in the evolution of metastatic tumours; CCDC8 methylation occurs at an early stage of metastatic evolution whereas methylation of GANLT9 and BNC1 occurs at a later stage of tumour evolution. Knockdown of these genes by RNAi resulted in a significant increase in the migratory and invasive potential of breast cancer cell lines. CONCLUSIONS: These findings indicate that GALNT9 (an initiator of O-glycosylation), CCDC8 (a regulator of microtubule dynamics) and BNC1 (a transcription factor with a broad range of targets) may play a role in the progression of primary breast tumours to brain metastases. These genes may be useful as prognostic markers and their products may provide novel therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA