Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39386513

RESUMEN

Huntington disease (HD) is a progressive and devastating neurodegenerative disease caused by expansion of a glutamine-coding CAG tract in the huntingtin ( HTT ) gene above a critical threshold of ∼35 repeats resulting in expression of mutant HTT (mHTT). A promising treatment approach being tested in clinical trials is HTT lowering, which aims to reduce levels of the mHTT protein. Target engagement of these therapies in the brain are inferred using antibody-based assays to measure mHTT levels in the cerebrospinal fluid (CSF), which is frequently reported as absolute mHTT concentration based on a monomeric protein standard used to generate a standard curve. However, patient biofluids are a complex milieu of different mHTT protein species, suggesting that absolute quantitation is challenging, and a single, recombinant protein standard may not be sufficient to interpret assay signal as molar mHTT concentration. In this study, we used immunoprecipitation and flow cytometry (IP-FCM) to investigate different factors that influence mHTT detection assay signal. Our results show that HTT protein fragmentation, protein-protein interactions, affinity tag positioning, oligomerization and polyglutamine tract length affect assay signal intensity, indicating that absolute HTT quantitation in heterogeneous biological samples is not possible with current technologies using a single standard protein. We also explore the binding specificity of the MW1 anti-polyglutamine antibody, commonly used in these assays as a mHTT-selective reagent and demonstrate that mHTT binding is preferred but not specific. Furthermore, we find that MW1 depletion is not only incomplete, leaving residual mHTT, but also non-specific, resulting in pull down of some wildtype HTT protein. Based on these observations, we recommend that mHTT detection assays report only relative mHTT quantitation using normalized arbitrary units of assay signal intensity, rather than molar concentrations, in the assessment of central nervous system HTT lowering in ongoing clinical and preclinical studies, and that MW1-depletion not be used a method for quantifying wildtype HTT protein.

2.
F1000Res ; 13: 922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257448

RESUMEN

Huntingtin encodes a 3144 amino acid protein, with a polyglutamine repeat tract at the N-terminus. Expansion of this repeat tract above a pathogenic threshold of 36 repeats is the causative mutation of Huntington's disease, a neurodegenerative disorder characterized by loss of striatal neurons. Here we have characterized twenty Huntingtin commercial antibodies for western blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. These studies are part of a larger, collaborative initiative seeking to address antibody reproducibility issues by characterizing commercially available antibodies for human proteins and publishing the results openly as a resource for the scientific community. While use of antibodies and protocols vary between laboratories, we encourage readers to use this report as a guide to select the most appropriate antibodies for their specific needs.


Asunto(s)
Anticuerpos , Western Blotting , Técnica del Anticuerpo Fluorescente , Proteína Huntingtina , Inmunoprecipitación , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/inmunología , Inmunoprecipitación/métodos , Técnica del Anticuerpo Fluorescente/métodos , Anticuerpos/inmunología , Animales , Enfermedad de Huntington/inmunología , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Células HEK293
3.
Sci Adv ; 10(29): eado5264, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028820

RESUMEN

Huntingtin protein, mutated in Huntington's disease, is implicated in nucleic acid-mediated processes, yet the evidence for direct huntingtin-nucleic acid interaction is limited. Here, we show wild-type and mutant huntingtin copurify with nucleic acids, primarily RNA, and interact directly with G-rich RNAs in in vitro assays. Huntingtin RNA-immunoprecipitation sequencing from patient-derived fibroblasts and neuronal progenitor cells expressing wild-type and mutant huntingtin revealed long noncoding RNA NEAT1 as a significantly enriched transcript. Altered NEAT1 levels were evident in Huntington's disease cells and postmortem brain tissues, and huntingtin knockdown decreased NEAT1 levels. Huntingtin colocalized with NEAT1 in paraspeckles, and we identified a high-affinity RNA motif preferred by huntingtin. This study highlights NEAT1 as a huntingtin interactor, demonstrating huntingtin's involvement in RNA-mediated functions and paraspeckle regulation.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , ARN Largo no Codificante , Proteínas de Unión al ARN , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Unión Proteica , Fibroblastos/metabolismo , Mutación
4.
Structure ; 31(9): 1121-1131.e6, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37390814

RESUMEN

The huntingtin (HTT) protein plays critical roles in numerous cellular pathways by functioning as a scaffold for its many interaction partners and HTT knock out is embryonic lethal. Interrogation of HTT function is complicated by the large size of this protein so we studied a suite of structure-rationalized subdomains to investigate the structure-function relationships within the HTT-HAP40 complex. Protein samples derived from the subdomain constructs were validated using biophysical methods and cryo-electron microscopy, revealing they are natively folded and can complex with validated binding partner, HAP40. Derivatized versions of these constructs enable protein-protein interaction assays in vitro, with biotin tags, and in cells, with luciferase two-hybrid assay-based tags, which we use in proof-of-principle analyses to further interrogate the HTT-HAP40 interaction. These open-source biochemical tools enable studies of fundamental HTT biochemistry and biology, will aid the discovery of macromolecular or small-molecule binding partners and help map interaction sites across this large protein.


Asunto(s)
Proteína Huntingtina , Proteínas Nucleares , Microscopía por Crioelectrón , Proteína Huntingtina/química , Proteínas Nucleares/química , Humanos
5.
Annu Rev Food Sci Technol ; 3: 79-104, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22224553

RESUMEN

Functional food ingredients (nutraceuticals) in fruits range from small molecular components, such as the secondary plant products, to macromolecular entities, e.g., pectin and cellulose, that provide several health benefits. In fruits, the most visible functional ingredients are the color components anthocyanins and carotenoids. In addition, several other secondary plant products, including terpenes, show health beneficial activities. A common feature of several functional ingredients is their antioxidant function. For example, reactive oxygen species (ROS) can be oxidized and stabilized by flavonoid components, and the flavonoid radical can undergo electron rearrangement stabilizing the flavonoid radical. Compounds that possess an orthodihydroxy or quinone structure can interact with cellular proteins in the Keap1/Nrf2/ARE pathway to activate the gene transcription of antioxidant enzymes. Carotenoids and flavonoids can also exert their action by modulating the signal transduction and gene expression within the cell. Recent results suggest that these activities are primarily responsible for the health benefits associated with the consumption of fruits and vegetables.


Asunto(s)
Tecnología de Alimentos , Alimentos Fortificados/análisis , Frutas/química , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Suplementos Dietéticos/análisis , Tecnología de Alimentos/tendencias , Alimentos Funcionales/análisis
6.
Biophys Chem ; 136(1): 7-12, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18508185

RESUMEN

Stopped-flow fluorescence anisotropy was used to determine the kinetic parameters that define acetylation-dependent bromodomain-histone interactions. Bromodomains are acetyllysine binding motifs found in many chromatin associated proteins. Individual bromodomains were derived from the polybromo-1 protein, which is a subunit of the PBAF chromatin-remodeling complex that has six tandem bromodomains in the amino-terminal region. The average k(on) and k(off) values for the formation of high-affinity complexes are 275 M(-1) s(-1) and 0.41 x 10(-3) s(-1), respectively. The average k(on) and k(off) values for the formation of low-affinity complexes are 119 M(-1) s(-1) and 1.42 x 10(-3) s(-1), respectively. Analysis of the on- and off-rates yields acetylation site-dependent equilibrium dissociation constants averaging 1.4 and 12.9 microM for high- and low-affinity complexes, respectively. This work represents the first examination of kinetic mechanisms of acetylation-dependent bromodomain-histone interactions.


Asunto(s)
Histonas/química , Proteínas Nucleares/química , Factores de Transcripción/química , Acetilación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Unión al ADN , Polarización de Fluorescencia , Cinética , Datos de Secuencia Molecular , Péptidos/química , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína
7.
Anal Biochem ; 374(2): 304-12, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18191465

RESUMEN

An acetyl-histone peptide library was used to determine the thermodynamic parameters that define acetylation-dependent bromodomain-histone interactions. Bromodomains interact with histones by binding acetylated lysines. The bromodomain used in this study, BrD3, is derived from the polybromo-1 protein, which is a subunit of the PBAF chromatin remodeling complex. Steady-state fluorescence anisotropy was used to examine the variations in specificity and affinity that drive molecular recognition. Temperature and salt concentration dependence studies demonstrate that the hydrophobic effect is the primary driving force, consistent with lysine acetylation being required for binding. An electrostatic effect was observed in only two complexes where the acetyl-lysine was adjacent to an arginine. The large change in heat capacity determined for the specific complex suggests that the dehydrated BrD3-histone interface forms a tightly bound, high-affinity complex with the target site. These explorations into the thermodynamic driving forces that confer acetylation site-dependent BrD3-histone interactions improve our understanding of how individual bromodomains work in isolation. Furthermore, this work will permit the development of hypotheses regarding how the native Pb1, and the broader class of bromodomain proteins, directs multisubunit chromatin remodeling complexes to specific acetyl-nucleosome sites in vivo.


Asunto(s)
Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Acetilación , Secuencia de Aminoácidos , Proteínas de Unión al ADN , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/metabolismo , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Termodinámica
8.
Biochem Biophys Res Commun ; 355(3): 661-6, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17320048

RESUMEN

The human polybromo-1 protein is thought to localize the Polybromo, BRG1-associated factors chromatin-remodeling complex to kinetochores during mitosis via direct interaction of its six tandem bromodomains with acetylated nucleosomes. Bromodomains are acetyl-lysine binding modules roughly 100 amino acids in length originally found in chromatin associated proteins. Previous studies verified acetyl-histone binding by each bromodomain, but site-specificity, a central tenet of the histone code hypothesis, was not examined. Here, the acetylation site-dependence of bromodomain-histone interactions was examined using steady-state fluorescence anisotropy. Results indicate that single bromodomains bind specific acetyl-lysine sites within the histone tail with sub-micromolar affinity. Identification of duplicate target sites suggests that native Pb1 interacts with both copies of histone H3 upon nucleosome assembly. Quantitative analysis of single bromodomain-histone interactions can be used to develop hypotheses regarding the histone acetylation pattern that acts as the binding target of the native polybromo-1 protein.


Asunto(s)
Histonas/química , Lisina/metabolismo , Proteínas Nucleares/química , Factores de Transcripción/química , Acetilación , Secuencia de Aminoácidos , Proteínas de Unión al ADN , Histonas/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas de Unión a Caperuzas de ARN/metabolismo , Factores de Transcripción/metabolismo
9.
Protein Expr Purif ; 50(1): 111-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16908192

RESUMEN

Computational analysis reveals six tandem bromodomains within the amino-terminal region of the human Polybromo-1 protein, a required subunit of the Polybromo, BRG1-associated factors chromatin remodeling complex. Bromodomains are acetyl-lysine binding modules found in many chromatin binding proteins and histone acetyltransferases. Recent in vivo studies suggest that bromodomains can both discriminate the presence of an acetyl group on a lysine side chain and locate the acetyl-lysine within a histone protein. Together, this implies that multiple bromodomains may be able to function cooperatively and recognize a specific acetylation pattern to localize remodeling complexes to specific chromatin sites. Here, the cloning, expression and bioactivity of recombinant bromodomains from the human Polybromo-1 protein is described. Individual bromodomains from Polybromo-1 were cloned from human cDNA into a pET30b expression vector enabling effective one-step purification by affinity chromatography. Due to complications, including the high number of rare codons found in the coding regions and the tendency of individually expressed domains to aggregate and misfold, bacterial expression was only achieved using a cell strain containing rare eukaryotic tRNAs. Fluorescence-based bioactivity assays were performed to determine if native binding features were retained. The present cloning, expression, and purification procedure enabled the preparation of large quantity and high yields of biologically active recombinant bromodomains from human Polybromo-1 for in vitro structure and function studies. This is the first report of recombinant active form of bromodomains obtained from PB1.


Asunto(s)
Lisina , Proteínas Nucleares/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Clonación Molecular , ADN Complementario/genética , Proteínas de Unión al ADN , Vectores Genéticos/genética , Humanos , Lisina/análogos & derivados , Lisina/genética , Lisina/aislamiento & purificación , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...