Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 181(6): 1364-1379.e14, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32470395

RESUMEN

Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages ß-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a ß-arrestin-biased agonist but also extends profound ß-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and ß-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.


Asunto(s)
Conducta Adictiva/metabolismo , Receptores de Neurotensina/metabolismo , beta-Arrestinas/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Conducta Adictiva/tratamiento farmacológico , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Sci Signal ; 9(422): ra35, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27048566

RESUMEN

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are tetrameric intracellular Ca(2+)-release channels with each subunit containing a binding site for IP3in the amino terminus. We provide evidence that four IP3molecules are required to activate the channel under diverse conditions. Comparing the concentration-response relationship for binding and Ca(2+)release suggested that IP3Rs are maximally occupied by IP3before substantial Ca(2+)release occurs. We showed that ligand binding-deficient subunits acted in a dominant-negative manner when coexpressed with wild-type monomers in the chicken immune cell line DT40-3KO, which lacks all three genes encoding IP3R subunits, and confirmed the same effect in an IP3R-null human cell line (HEK-3KO) generated by CRISPR/Cas9 technology. Using dimeric and tetrameric concatenated IP3Rs with increasing numbers of binding-deficient subunits, we addressed the obligate ligand stoichiometry. The concatenated IP3Rs with four ligand-binding sites exhibited Ca(2+)release and electrophysiological properties of native IP3Rs. However, IP3failed to activate IP3Rs assembled from concatenated dimers consisting of one binding-competent and one binding-deficient mutant subunit. Similarly, IP3Rs containing two monomers of IP3R2short, an IP3binding-deficient splice variant, were nonfunctional. Concatenated tetramers containing only three binding-competent ligand-binding sites were nonfunctional under a wide range of activating conditions. These data provide definitive evidence that IP3-induced Ca(2+)release only occurs when each IP3R monomer within the tetramer is occupied by IP3, thereby ensuring fidelity of Ca(2+)release.


Asunto(s)
Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/química , Dominios Proteicos , Animales , Sitios de Unión/genética , Sistemas CRISPR-Cas , Señalización del Calcio/genética , Línea Celular , Células HEK293 , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Modelos Moleculares , Estructura Molecular , Mutación , Unión Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
3.
J Biol Chem ; 291(10): 4846-60, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26755721

RESUMEN

The ability of inositol 1,4,5-trisphosphate receptors (IP3R) to precisely initiate and generate a diverse variety of intracellular Ca(2+) signals is in part mediated by the differential regulation of the three subtypes (R1, R2, and R3) by key functional modulators (IP3, Ca(2+), and ATP). However, the contribution of IP3R heterotetramerization to Ca(2+) signal diversity has largely been unexplored. In this report, we provide the first definitive biochemical evidence of endogenous heterotetramer formation. Additionally, we examine the contribution of individual subtypes within defined concatenated heterotetramers to the shaping of Ca(2+) signals. Under conditions where key regulators of IP3R function are optimal for Ca(2+) release, we demonstrate that individual monomers within heteromeric IP3Rs contributed equally toward generating a distinct 'blended' sensitivity to IP3 that is likely dictated by the unique IP3 binding affinity of the heteromers. However, under suboptimal conditions where [ATP] were varied, we found that one subtype dictated the ATP regulatory properties of heteromers. We show that R2 monomers within a heterotetramer were both necessary and sufficient to dictate the ATP regulatory properties. Finally, the ATP-binding site B in R2 critical for ATP regulation was mutated and rendered non-functional to address questions relating to the stoichiometry of IP3R regulation. Two intact R2 monomers were sufficient to maintain ATP regulation in R2 homotetramers. In summary, we demonstrate that heterotetrameric IP3R do not necessarily behave as the sum of the constituent subunits, and these properties likely extend the versatility of IP3-induced Ca(2+) signaling in cells expressing multiple IP3R isoforms.


Asunto(s)
Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Multimerización de Proteína , Potenciales de Acción , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Pollos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Potasio/metabolismo , Unión Proteica
4.
Biochem Soc Trans ; 43(3): 364-70, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26009177

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of ubiquitous, ER localized, tetrameric Ca2+ release channels. There are three subtypes of the IP3Rs (R1, R2, R3), encoded by three distinct genes, that share ∼60-70% sequence identity. The diversity of Ca2+ signals generated by IP3Rs is thought to be largely the result of differential tissue expression, intracellular localization and subtype-specific regulation of the three subtypes by various cellular factors, most significantly InsP3, Ca2+ and ATP. However, largely unexplored is the notion of additional signal diversity arising from the assembly of both homo and heterotetrameric InsP3Rs. In the present article, we review the biochemical and functional evidence supporting the existence of homo and heterotetrameric populations of InsP3Rs. In addition, we consider a strategy that utilizes genetically concatenated InsP3Rs to study the functional characteristics of heterotetramers with unequivocally defined composition. This approach reveals that the overall properties of IP3R are not necessarily simply a blend of the constituent monomers but that specific subtypes appear to dominate the overall characteristics of the tetramer. It is envisioned that the ability to generate tetramers with defined wild type and mutant subunits will be useful in probing fundamental questions relating to IP3R structure and function.


Asunto(s)
Señalización del Calcio/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Relación Estructura-Actividad , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Multimerización de Proteína , Estructura Terciaria de Proteína
5.
Mol Biol Evol ; 32(9): 2236-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25911230

RESUMEN

Cellular Ca(2+) homeostasis is tightly regulated and is pivotal to life. Inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) are the major ion channels that regulate Ca(2+) release from intracellular stores. Although these channels have been extensively investigated in multicellular organisms, an appreciation of their evolution and the biology of orthologs in unicellular organisms is largely lacking. Extensive phylogenetic analyses reveal that the IP3R gene superfamily is ancient and diverged into two subfamilies, IP3R-A and IP3R-B/RyR, at the dawn of Opisthokonta. IP3R-B/RyR further diversified into IP3R-B and RyR at the stem of Filozoa. Subsequent evolution and speciation of Holozoa is associated with duplication of IP3R-A and RyR genes, and loss of IP3R-B in the vertebrate lineages. To gain insight into the properties of IP3R important for the challenges of multicellularity, the IP3R-A and IP3R-B family orthologs were cloned from Capsaspora owczarzaki, a close unicellular relative to Metazoa (designated as CO.IP3R-A and CO.IP3R-B). Both proteins were targeted to the endoplasmic reticulum. However, CO.IP3R-A, but strikingly not CO.IP3R-B, bound IP3, exhibited robust Ca(2+) release activity and associated with mammalian IP3Rs. These data indicate strongly that CO.IP3R-A as an exemplar of ancestral IP3R-A orthologs forms bona fide IP3-gated channels. Notably, however, CO.IP3R-A appears not to be regulated by Ca(2+), ATP or Protein kinase A-phosphorylation. Collectively, our findings explore the origin, conservation, and diversification of IP3R gene families and provide insight into the functionality of ancestral IP3Rs and the added specialization of these proteins in Metazoa.


Asunto(s)
Proteínas Bacterianas/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Mycoplasma/genética , Adenosina Trifosfato/fisiología , Señalización del Calcio , Evolución Molecular , Expresión Génica , Filogenia
6.
J Biol Chem ; 288(41): 29772-84, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23955339

RESUMEN

Vertebrate genomes code for three subtypes of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R1, -2, and -3). Individual IP3R monomers are assembled to form homo- and heterotetrameric channels that mediate Ca(2+) release from intracellular stores. IP3R subtypes are regulated differentially by IP3, Ca(2+), ATP, and various other cellular factors and events. IP3R subtypes are seldom expressed in isolation in individual cell types, and cells often express different complements of IP3R subtypes. When multiple subtypes of IP3R are co-expressed, the subunit composition of channels cannot be specifically defined. Thus, how the subunit composition of heterotetrameric IP3R channels contributes to shaping the spatio-temporal properties of IP3-mediated Ca(2+) signals has been difficult to evaluate. To address this question, we created concatenated IP3R linked by short flexible linkers. Dimeric constructs were expressed in DT40-3KO cells, an IP3R null cell line. The dimeric proteins were localized to membranes, ran as intact dimeric proteins on SDS-PAGE, and migrated as an ∼1100-kDa band on blue native gels exactly as wild type IP3R. Importantly, IP3R channels formed from concatenated dimers were fully functional as indicated by agonist-induced Ca(2+) release. Using single channel "on-nucleus" patch clamp, the channels assembled from homodimers were essentially indistinguishable from those formed by the wild type receptor. However, the activity of channels formed from concatenated IP3R1 and IP3R2 heterodimers was dominated by IP3R2 in terms of the characteristics of regulation by ATP. These studies provide the first insight into the regulation of heterotetrameric IP3R of defined composition. Importantly, the results indicate that the properties of these channels are not simply a blend of those of the constituent IP3R monomers.


Asunto(s)
Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Multimerización de Proteína , Animales , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/fisiología , Citosol/metabolismo , Humanos , Immunoblotting , Receptores de Inositol 1,4,5-Trifosfato/genética , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Ratones , Mutación , Técnicas de Placa-Clamp , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Extractos de Tejidos/metabolismo
7.
J Biol Chem ; 288(16): 11122-34, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23479737

RESUMEN

Inositol 1,4,5-trisphosphate receptor isoforms are a family of ubiquitously expressed ligand-gated channels encoded by three individual genes. The proteins are localized to membranes of intracellular Ca(2+) stores and play pivotal roles in Ca(2+) homeostasis. Previous studies have demonstrated that IP3R1 is cleaved by the intracellular proteases calpain and caspase both in vivo and in vitro. However, the resultant cleavage products are poorly defined, and the functional consequences of these proteolytic events are not fully understood. We demonstrate that IP3R1 is cleaved during staurosporine-induced apoptosis, yielding N-terminal fragments encompassing the ligand-binding domain and the majority of the central modulatory domain together with a C-terminal fragment containing the channel domain and cytosolic tail. Notably, these fragments remain associated with the membrane after initiation of apoptotic cleavage. Furthermore, when recombinant IP3R1 fragments, corresponding to those predicted to be generated by caspase or calpain cleavage, are stably coexpressed in cells, they physically associate and form functional channels. These data provide novel insights regarding the regulation of IP3R1 during proteolysis and provide direct evidence that polypeptide continuity is not required for IP3R activation and Ca(2+) release.


Asunto(s)
Canales de Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Multimerización de Proteína/fisiología , Proteolisis , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Canales de Calcio/genética , Inhibidores Enzimáticos/farmacología , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Estaurosporina/farmacología
8.
Eur J Pharm Biopharm ; 72(1): 119-29, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19073253

RESUMEN

Despite recent success, many fast-disintegrating tablets (FDTs) still face problems of low mechanical strength, poor mouth-feel and higher disintegration times. This study aimed to optimise FDTs using a progressive three-stage approach. A series of hardness, fracturability and disintegration time tests were performed on the formulations at each stage. During Stage I, tablets were prepared in concentrations between 2% and 5% w/w, and were formulated at each concentration as single and combination bloom strength gelatin (BSG) using 75 and 225 BSGs. Analysis revealed that both hardness and disintegration time increased with an increase in gelatin concentration. A combination (5% gelatin) FDT comprising a 50:50 ratio of 75:225 BSGs (hardness: 13.7+/-0.9 N and disintegration time: 24.1+/-0.6s) was judged the most ideal, and was carried forward to Stage II: the addition of the saccharides sorbitol, mannitol and sucrose in concentrations between 10% and 80% w/w. The best properties were exhibited by mannitol-containing formulations (50%-hardness: 30.9+/-2.8 N and disintegration time: 13.3+/-2.1s), which were carried forward to the next stage: the addition of viscosity-modifying polymers to improve mouth-feel and aid pre-gastric retention. Addition of carbopol 974P-NF resulted in the enhancement of viscosity with a compromise of the hardness of the tablet, whereas Pluronic F127 (6%) showed an increase in disintegration time and viscosity with retention of mechanical properties.


Asunto(s)
Química Farmacéutica/instrumentación , Química Farmacéutica/métodos , Excipientes/química , Comprimidos , Acrilatos/química , Animales , Bovinos , Liofilización , Gelatina/química , Dureza , Manitol/química , Fenómenos Fisiológicos , Poloxámero/química , Solubilidad , Sorbitol/química , Sacarosa/química , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...