Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Blood Adv ; 8(4): 899-908, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38191666

RESUMEN

ABSTRACT: Fanconi anemia (FA) is a hereditary, DNA repair deficiency disorder caused by pathogenic variants in any 1 of 22 known genes (FANCA-FANCW). Variants in FANCA account for nearly two-thirds of all patients with FA. Clinical presentation of FA can be heterogeneous and include congenital abnormalities, progressive bone marrow failure, and predisposition to cancer. Here, we describe a relatively mild disease manifestation among 6 individuals diagnosed with FA, each compound heterozygous for 1 established pathogenic FANCA variant and 1 FANCA exon 36 variant, c.3624C>T. These individuals had delayed onset of hematological abnormalities, increased survival, reduced incidence of cancer, and improved fertility. Although predicted to encode a synonymous change (p.Ser1208=), the c.3624C>T variant causes a splicing error resulting in a FANCA transcript missing the last 4 base pairs of exon 36. Deep sequencing and quantitative reverse transcription polymerase chain reaction analysis revealed that 6% to 10% of the FANCA transcripts included the canonical splice product, which generated wild-type FANCA protein. Consistently, functional analysis of cell lines from the studied individuals revealed presence of residual FANCD2 ubiquitination and FANCD2 foci formation, better cell survival, and decreased late S/G2 accumulation in response to DNA interstrand cross-linking agent, indicating presence of residual activity of the FA repair pathway. Thus, the c.3624C>T variant is a hypomorphic allele, which contributes to delayed manifestation of FA disease phenotypes in individuals with at least 1 c.3624C>T allele.


Asunto(s)
Anemia de Fanconi , Neoplasias , Humanos , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Línea Celular , Genotipo
2.
Blood Adv ; 8(2): 497-511, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38019014

RESUMEN

ABSTRACT: Familial platelet disorder with associated myeloid malignancies (FPDMM) is caused by germline RUNX1 mutations and characterized by thrombocytopenia and increased risk of hematologic malignancies. We recently launched a longitudinal natural history study for patients with FPDMM. Among 27 families with research genomic data by the end of 2021, 26 different germline RUNX1 variants were detected. Besides missense mutations enriched in Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-region mutations and large deletions were detected in 6 and 7 families, respectively. In 25 of 51 (49%) patients without hematologic malignancy, somatic mutations were detected in at least 1 of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia (AML) driver genes. BCOR was the most frequently mutated gene (in 9 patients), and multiple BCOR mutations were identified in 4 patients. Mutations in 6 other CHIP- or AML-driver genes (TET2, DNMT3A, KRAS, LRP1B, IDH1, and KMT2C) were also found in ≥2 patients without hematologic malignancy. Moreover, 3 unrelated patients (1 with myeloid malignancy) carried somatic mutations in NFE2, which regulates erythroid and megakaryocytic differentiation. Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic mutations over time, and stable clones were more frequently found in older adult patients. In summary, there are diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring changes in somatic mutations and clinical manifestations prospectively may reveal mechanisms for malignant progression and inform clinical management. This trial was registered at www.clinicaltrials.gov as #NCT03854318.


Asunto(s)
Trastornos de la Coagulación Sanguínea Heredados , Trastornos de las Plaquetas Sanguíneas , Neoplasias Hematológicas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Humanos , Anciano , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Trastornos Mieloproliferativos/genética , Neoplasias Hematológicas/genética , Genómica , Células Germinativas/patología
3.
bioRxiv ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37066159

RESUMEN

Fanconi anemia (FA) is a rare genetic disease characterized by heterogeneous congenital abnormalities and increased risk for bone marrow failure and cancer. FA is caused by mutation of any one of 23 genes, the protein products of which function primarily in the maintenance of genome stability. An important role for the FA proteins in the repair of DNA interstrand crosslinks (ICLs) has been established in vitro . While the endogenous sources of ICLs relevant to the pathophysiology of FA have yet to be clearly determined, a role for the FA proteins in a two-tier system for the detoxification of reactive metabolic aldehydes has been established. To discover new metabolic pathways linked to FA, we performed RNA-seq analysis on non-transformed FA-D2 ( FANCD2 -/- ) and FANCD2-complemented patient cells. Multiple genes associated with retinoic acid metabolism and signaling were differentially expressed in FA-D2 ( FANCD2 -/- ) patient cells, including ALDH1A1 and RDH10 , which encode for retinaldehyde and retinol dehydrogenases, respectively. Increased levels of the ALDH1A1 and RDH10 proteins was confirmed by immunoblotting. FA-D2 ( FANCD2 -/- ) patient cells displayed increased aldehyde dehydrogenase activity compared to the FANCD2-complemented cells. Upon exposure to retinaldehyde, FA-D2 ( FANCD2 -/- ) cells exhibited increased DNA double-strand breaks and checkpoint activation indicative of a defect in the repair of retinaldehyde-induced DNA damage. Our findings describe a novel link between retinoic acid metabolism and FA and identify retinaldehyde as an additional reactive metabolic aldehyde relevant to the pathophysiology of FA.

4.
Mol Genet Genomic Med ; 11(8): e2179, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37070724

RESUMEN

BACKGROUND: Oral clefts and ectrodactyly are common, heterogeneous birth defects. We performed whole-exome sequencing (WES) analysis in a Syrian family. The proband presented with both orofacial clefting and ectrodactyly but not ectodermal dysplasia as typically seen in ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome-3. A paternal uncle with only an oral cleft was deceased and unavailable for analysis. METHODS: Variant annotation, Mendelian inconsistencies, and novel variants in known cleft genes were examined. Candidate variants were validated using Sanger sequencing, and pathogenicity assessed by knocking out the tp63 gene in zebrafish to evaluate its role during zebrafish development. RESULTS: Twenty-eight candidate de novo events were identified, one of which is in a known oral cleft and ectrodactyly gene, TP63 (c.956G > T, p.Arg319Leu), and confirmed by Sanger sequencing. CONCLUSION: TP63 mutations are associated with multiple autosomal dominant orofacial clefting and limb malformation disorders. The p.Arg319Leu mutation seen in this patient is de novo but also novel. Two known mutations in the same codon (c.956G > A, p.(Arg319His; rs121908839, c.955C > T), p.Arg319Cys) cause ectrodactyly, providing evidence that mutating this codon is deleterious. While this TP63 mutation is the best candidate for the patient's clinical presentation, whether it is responsible for the entire phenotype is unclear. Generation and characterization of tp63 knockout zebrafish showed necrosis and rupture of the head at 3 days post-fertilization (dpf). The embryonic phenotype could not be rescued by injection of zebrafish or human messenger RNA (mRNA). Further functional analysis is needed to determine what proportion of the phenotype is due to this mutation.


Asunto(s)
Labio Leporino , Fisura del Paladar , Humanos , Animales , Labio Leporino/genética , Fisura del Paladar/genética , Pez Cebra/genética , Secuenciación del Exoma , Siria , Mutación , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
5.
Am J Hum Genet ; 110(4): 551-564, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933558

RESUMEN

DNA variants that arise after conception can show mosaicism, varying in presence and extent among tissues. Mosaic variants have been reported in Mendelian diseases, but further investigation is necessary to broadly understand their incidence, transmission, and clinical impact. A mosaic pathogenic variant in a disease-related gene may cause an atypical phenotype in terms of severity, clinical features, or timing of disease onset. Using high-depth sequencing, we studied results from one million unrelated individuals referred for genetic testing for almost 1,900 disease-related genes. We observed 5,939 mosaic sequence or intragenic copy number variants distributed across 509 genes in nearly 5,700 individuals, constituting approximately 2% of molecular diagnoses in the cohort. Cancer-related genes had the most mosaic variants and showed age-specific enrichment, in part reflecting clonal hematopoiesis in older individuals. We also observed many mosaic variants in genes related to early-onset conditions. Additional mosaic variants were observed in genes analyzed for reproductive carrier screening or associated with dominant disorders with low penetrance, posing challenges for interpreting their clinical significance. When we controlled for the potential involvement of clonal hematopoiesis, most mosaic variants were enriched in younger individuals and were present at higher levels than in older individuals. Furthermore, individuals with mosaicism showed later disease onset or milder phenotypes than individuals with non-mosaic variants in the same genes. Collectively, the large compendium of variants, disease correlations, and age-specific results identified in this study expand our understanding of the implications of mosaic DNA variation for diagnosis and genetic counseling.


Asunto(s)
Variaciones en el Número de Copia de ADN , Mosaicismo , Variaciones en el Número de Copia de ADN/genética , Pruebas Genéticas , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación
6.
bioRxiv ; 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36789433

RESUMEN

Germline RUNX1 mutations lead to familial platelet disorder with associated myeloid malignancies (FPDMM), which is characterized by thrombocytopenia and a life-long risk (35-45%) of hematological malignancies. We recently launched a longitudinal natural history study for patients with FPDMM at the NIH Clinical Center. Among 29 families with research genomic data, 28 different germline RUNX1 variants were detected. Besides missense mutations enriched in Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-region mutations and large deletions were detected in 6 and 7 families, respectively. In 24 of 54 (44.4%) non-malignant patients, somatic mutations were detected in at least one of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia (AML) driver genes. BCOR was the most frequently mutated gene (in 9 patients), and multiple BCOR mutations were identified in 4 patients. Mutations in 7 other CHIP or AML driver genes ( DNMT3A, TET2, NRAS, SETBP1, SF3B1, KMT2C , and LRP1B ) were also found in more than one non-malignant patient. Moreover, three unrelated patients (one with myeloid malignancy) carried somatic mutations in NFE2 , which regulates erythroid and megakaryocytic differentiation. Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic mutations over time, and stable clones were more frequently found in elderly patients. In summary, there are diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring dynamic changes of somatic mutations prospectively will benefit patients’ clinical management and reveal mechanisms for progression to myeloid malignancies. Key Points: Comprehensive genomic profile of patients with FPDMM with germline RUNX1 mutations. Rising clonal hematopoiesis related secondary mutations that may lead to myeloid malignancies.

7.
Nature ; 612(7940): 495-502, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450981

RESUMEN

Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.


Asunto(s)
Reparación del ADN , Anemia de Fanconi , Genómica , Neoplasias de Cabeza y Cuello , Humanos , Aldehídos/efectos adversos , Aldehídos/metabolismo , Reparación del ADN/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Neoplasias de Cabeza y Cuello/inducido químicamente , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Infecciones por Papillomavirus , Carcinoma de Células Escamosas de Cabeza y Cuello/inducido químicamente , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Daño del ADN/efectos de los fármacos
8.
Blood ; 139(23): 3439-3449, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35349664

RESUMEN

We follow a patient with Diamond-Blackfan anemia (DBA) mosaic for a pathogenic RPS19 haploinsufficiency mutation with persistent transfusion-dependent anemia. Her anemia remitted on eltrombopag (EPAG), but surprisingly, mosaicism was unchanged, suggesting that both mutant and normal cells responded. When EPAG was withheld, her anemia returned. In addition to expanding hematopoietic stem/progenitor cells, EPAG aggressively chelates iron. Because DBA anemia, at least in part, results from excessive intracellular heme leading to ferroptotic cell death, we hypothesized that the excess heme accumulating in ribosomal protein-deficient erythroid precursors inhibited the growth of adjacent genetically normal precursors, and that the efficacy of EPAG reflected its ability to chelate iron, limit heme synthesis, and thus limit toxicity in both mutant and normal cells. To test this, we studied Rpl11 haploinsufficient (DBA) mice and mice chimeric for the cytoplasmic heme export protein, FLVCR. Flvcr1-deleted mice have severe anemia, resembling DBA. Mice transplanted with ratios of DBA to wild-type marrow cells of 50:50 are anemic, like our DBA patient. In contrast, mice transplanted with Flvcr1-deleted (unable to export heme) and wild-type marrow cells at ratios of 50:50 or 80:20 have normal numbers of red cells. Additional studies suggest that heme exported from DBA erythroid cells might impede the nurse cell function of central macrophages of erythroblastic islands to impair the maturation of genetically normal coadherent erythroid cells. These findings have implications for the gene therapy of DBA and may provide insights into why del(5q) myelodysplastic syndrome patients are anemic despite being mosaic for chromosome 5q deletion and loss of RPS14.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia , Anemia/patología , Anemia de Diamond-Blackfan/metabolismo , Animales , Deleción Cromosómica , Células Eritroides/metabolismo , Eritropoyesis/genética , Femenino , Hemo/metabolismo , Humanos , Hierro/metabolismo , Ratones , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
9.
Blood Cells Mol Dis ; 93: 102640, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34991062

RESUMEN

Progressive pancytopenia is a common feature observed in DNA crosslink repair deficiency disorder, Fanconi anemia (FA). However, this phenotype has not been recapitulated in single FA gene knockout animal models. In this study, we analyzed hematological characteristics in zebrafish null mutants for two FA genes, fanca and fanco. In adult mutants, we demonstrate age-associated reduction in blood cell counts for all lineages, resembling progressive pancytopenia in FA patients. In larval mutants, we demonstrate vascular injury-induced thrombosis defects, particularly upon treatment with crosslinking agent diepoxybutane (DEB), indicating DNA damage induced inefficiency of thrombocytes.


Asunto(s)
Anemia de Fanconi , Pancitopenia , Trombosis , Animales , Daño del ADN , Anemia de Fanconi/genética , Humanos , Pancitopenia/genética , Trombosis/genética , Pez Cebra
10.
Dev Cell ; 56(15): 2207-2222.e7, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34256011

RESUMEN

Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.


Asunto(s)
Apoptosis/fisiología , Reparación del ADN/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Células HeLa , Humanos , Ubiquitinación , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-34162668

RESUMEN

IKZF1 encodes Ikaros, a zinc finger-containing transcription factor crucial to the development of the hematopoietic system. Germline pathogenic variants in IKZF1 have been reported in patients with acute lymphocytic leukemia and immunodeficiency syndromes. Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome characterized by erythroid hypoplasia, associated with a spectrum of congenital anomalies and an elevated risk of certain cancers. DBA is usually caused by heterozygous pathogenic variants in genes that function in ribosomal biogenesis; however, in many cases the genetic etiology is unknown. We identified a germline IKZF1 variant, rs757907717 C > T, in identical twins with DBA-like features and autoimmune gastrointestinal disease. rs757907717 C > T results in a p.R381C amino acid change in the IKZF1 Ik-x isoform (p.R423C on isoform Ik-1), which we show is associated with altered global gene expression and perturbation of transcriptional networks involved in hematopoietic system development. These data suggest that this missense substitution caused a DBA-like syndrome in this family because of alterations in hematopoiesis, including dysregulation of networks essential for normal erythropoiesis and the immune system.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Enfermedades en Gemelos/genética , Mutación de Línea Germinal , Hematopoyesis/genética , Factor de Transcripción Ikaros/genética , Regulación de la Expresión Génica , Humanos , Lactante , Masculino , Mutación Missense , Linaje , Isoformas de Proteínas/genética , Estabilidad Proteica , Transcriptoma
12.
Mol Genet Genomic Med ; 9(7): e1693, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33960719

RESUMEN

BACKGROUND: Fanconi anemia (FA) is an inherited bone marrow failure syndrome associated with characteristic dysmorphology primarily caused by biallelic pathogenic germline variants in any of 22 different DNA repair genes. There are limited data on the specific molecular causes of FA in different ethnic groups. METHODS: We performed exome sequencing and copy number variant analyses on 19 patients with FA from 17 families undergoing hematopoietic cell transplantation evaluation in Pakistan. The scientific literature was reviewed, and we curated germline variants reported in patients with FA from South Asia and the Middle East. RESULTS: The genetic causes of FA were identified in 14 of the 17 families: seven FANCA, two FANCC, one FANCF, two FANCG, and two FANCL. Homozygous and compound heterozygous variants were present in 12 and two families, respectively. Nine families carried variants previously reported as pathogenic, including two families with the South Asian FANCL founder variant. We also identified five novel likely deleterious variants in FANCA, FANCF, and FANCG in affected patients. CONCLUSIONS: Our study supports the importance of determining the genomic landscape of FA in diverse populations, in order to improve understanding of FA etiology and assist in the counseling of families.


Asunto(s)
Anemia de Fanconi/genética , Frecuencia de los Genes , Adolescente , Asia , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Exoma , Anemia de Fanconi/diagnóstico , Proteína del Grupo de Complementación F de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación L de la Anemia de Fanconi/genética , Femenino , Efecto Fundador , Humanos , Masculino , Medio Oriente , Mutación
13.
Artículo en Inglés | MEDLINE | ID: mdl-33172906

RESUMEN

Fanconi anemia (FA) is a clinically heterogenous and genetically diverse disease with 22 known complementation groups (FA-A to FA-W), resulting from the inability to repair DNA interstrand cross-links. This rare disorder is characterized by congenital defects, bone marrow failure, and cancer predisposition. FANCA is the most commonly mutated gene in FA and a variety of mostly private mutations have been documented, including small and large indels and point and splicing variants. Genotype-phenotype associations in FA are complex, and a relationship between particular FANCA variants and the observed cellular phenotype or illness severity remains unclear. In this study, we describe two siblings with compound heterozygous FANCA variants (c.3788_3790delTCT and c.4199G > A) who both presented with esophageal squamous cell carcinoma at the age of 51. The proband came to medical attention when he developed pancytopenia after a single cycle of low-dose chemotherapy including platinum-based therapy. Other than a minor thumb abnormality, neither patient had prior findings to suggest FA, including normal blood counts and intact fertility. Patient fibroblasts from both siblings display increased chromosomal breakage and hypersensitivity to interstrand cross-linking agents as seen in typical FA. Based on our functional data demonstrating that the c.4199G > A/p.R1400H variant represents a hypomorphic FANCA allele, we conclude that the residual activity of the Fanconi anemia repair pathway accounts for lack of spontaneous bone marrow failure or infertility with the late presentation of malignancy as the initial disease manifestation. This and similar cases of adult-onset esophageal cancer stress the need for chromosome breakage testing in patients with early onset of aerodigestive tract squamous cell carcinomas before platinum-based therapy is initiated.


Asunto(s)
Neoplasias Esofágicas/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Sistemas CRISPR-Cas , Rotura Cromosómica , ADN , Reparación del ADN , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas de Esófago/diagnóstico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/terapia , Fibroblastos/metabolismo , Edición Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación
14.
Sci Rep ; 10(1): 12563, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724039

RESUMEN

Neurofibromatosis type 2 (NF2) is an autosomal dominant Mendelian tumor predisposition disorder caused by germline pathogenic variants in the tumor suppressor NF2. Meningiomas are the second most common neoplasm in NF2, often occurring in multiple intracranial and spinal locations within the same patient. In this prospective longitudinal study, we assessed volumes and growth rates of ten spinal and ten cranial benign meningiomas in seven NF2 patients that concluded with surgical resection and performed whole-exome sequencing and copy-number variant (CNV) analysis of the tumors. Our comparison of the volume and the growth rate of NF2-associated spinal and cranial meningiomas point to the differences in timing of tumor initiation and/or to the differences in tumor progression (e.g., non-linear, saltatory growth) at these two anatomical locations. Genomic investigation of these tumors revealed that somatic inactivation of NF2 is the principal and perhaps the only driver of tumor initiation; and that tumor progression likely occurs via accumulation of CNVs, rather than point mutations. Results of this study contribute to a better understanding of NF2-associated meningiomas clinical behavior and their genetic underpinnings.


Asunto(s)
Meningioma/genética , Neurofibromatosis 2/genética , Adulto , Dosificación de Gen , Genómica , Genotipo , Humanos , Estudios Longitudinales , Masculino , Meningioma/patología , Mutación , Neurofibromatosis 2/patología , Estudios Prospectivos , Cráneo/patología , Columna Vertebral/patología , Carga Tumoral , Secuenciación del Exoma , Adulto Joven
15.
Proc Natl Acad Sci U S A ; 117(25): 14405-14411, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32518111

RESUMEN

Periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome is the most common periodic fever syndrome in children. The disease appears to cluster in families, but the pathogenesis is unknown. We queried two European-American cohorts and one Turkish cohort (total n = 231) of individuals with PFAPA for common variants previously associated with two other oropharyngeal ulcerative disorders, Behçet's disease and recurrent aphthous stomatitis. In a metaanalysis, we found that a variant upstream of IL12A (rs17753641) is strongly associated with PFAPA (OR 2.13, P = 6 × 10-9). We demonstrated that monocytes from individuals who are heterozygous or homozygous for this risk allele produce significantly higher levels of IL-12p70 upon IFN-γ and LPS stimulation than those from individuals without the risk allele. We also found that variants near STAT4, IL10, and CCR1-CCR3 were significant susceptibility loci for PFAPA, suggesting that the pathogenesis of PFAPA involves abnormal antigen-presenting cell function and T cell activity and polarization, thereby implicating both innate and adaptive immune responses at the oropharyngeal mucosa. Our results illustrate genetic similarities among recurrent aphthous stomatitis, PFAPA, and Behçet's disease, placing these disorders on a common spectrum, with recurrent aphthous stomatitis on the mild end, Behçet's disease on the severe end, and PFAPA intermediate. We propose naming these disorders Behçet's spectrum disorders to highlight their relationship. HLA alleles may be factors that influence phenotypes along this spectrum as we found new class I and II HLA associations for PFAPA distinct from Behçet's disease and recurrent aphthous stomatitis.


Asunto(s)
Síndrome de Behçet/genética , Fiebre/genética , Predisposición Genética a la Enfermedad , Linfadenitis/genética , Faringitis/genética , Estomatitis Aftosa/genética , Alelos , Síndrome de Behçet/inmunología , Niño , Estudios de Cohortes , Fiebre/inmunología , Genes MHC Clase I/genética , Genes MHC Clase I/inmunología , Genes MHC Clase II/genética , Genes MHC Clase II/inmunología , Sitios Genéticos/inmunología , Humanos , Linfadenitis/inmunología , Faringitis/inmunología , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Estomatitis Aftosa/inmunología , Síndrome
16.
Blood ; 135(18): 1588-1602, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32106311

RESUMEN

Fanconi anemia (FA) is the most common genetic cause of bone marrow failure and is caused by inherited pathogenic variants in any of 22 genes. Of these, only FANCB is X-linked. We describe a cohort of 19 children with FANCB variants, from 16 families of the International Fanconi Anemia Registry. Those with FANCB deletion or truncation demonstrate earlier-than-average onset of bone marrow failure and more severe congenital abnormalities compared with a large series of FA individuals in published reports. This reflects the indispensable role of FANCB protein in the enzymatic activation of FANCD2 monoubiquitination, an essential step in the repair of DNA interstrand crosslinks. For FANCB missense variants, more variable severity is associated with the extent of residual FANCD2 monoubiquitination activity. We used transcript analysis, genetic complementation, and biochemical reconstitution of FANCD2 monoubiquitination to determine the pathogenicity of each variant. Aberrant splicing and transcript destabilization were associated with 2 missense variants. Individuals carrying missense variants with drastically reduced FANCD2 monoubiquitination in biochemical and/or cell-based assays tended to show earlier onset of hematologic disease and shorter survival. Conversely, variants with near-normal FANCD2 monoubiquitination were associated with more favorable outcome. Our study reveals a genotype-phenotype correlation within the FA-B complementation group of FA, where severity is associated with level of residual FANCD2 monoubiquitination.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Alelos , Empalme Alternativo , Línea Celular Tumoral , Fibroblastos/metabolismo , Sitios Genéticos , Humanos , Modelos Biológicos , Mutación , Fenotipo , Estabilidad del ARN , Índice de Severidad de la Enfermedad , Ubiquitinación
17.
Proc Natl Acad Sci U S A ; 117(1): 552-562, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871193

RESUMEN

Systemic sclerosis (SSc) is a clinically heterogeneous autoimmune disease characterized by mutually exclusive autoantibodies directed against distinct nuclear antigens. We examined HLA associations in SSc and its autoantibody subsets in a large, newly recruited African American (AA) cohort and among European Americans (EA). In the AA population, the African ancestry-predominant HLA-DRB1*08:04 and HLA-DRB1*11:02 alleles were associated with overall SSc risk, and the HLA-DRB1*08:04 allele was strongly associated with the severe antifibrillarin (AFA) antibody subset of SSc (odds ratio = 7.4). These African ancestry-predominant alleles may help explain the increased frequency and severity of SSc among the AA population. In the EA population, the HLA-DPB1*13:01 and HLA-DRB1*07:01 alleles were more strongly associated with antitopoisomerase (ATA) and anticentromere antibody-positive subsets of SSc, respectively, than with overall SSc risk, emphasizing the importance of HLA in defining autoantibody subtypes. The association of the HLA-DPB1*13:01 allele with the ATA+ subset of SSc in both AA and EA patients demonstrated a transancestry effect. A direct correlation between SSc prevalence and HLA-DPB1*13:01 allele frequency in multiple populations was observed (r = 0.98, P = 3 × 10-6). Conditional analysis in the autoantibody subsets of SSc revealed several associated amino acid residues, mostly in the peptide-binding groove of the class II HLA molecules. Using HLA α/ß allelic heterodimers, we bioinformatically predicted immunodominant peptides of topoisomerase 1, fibrillarin, and centromere protein A and discovered that they are homologous to viral protein sequences from the Mimiviridae and Phycodnaviridae families. Taken together, these data suggest a possible link between HLA alleles, autoantibodies, and environmental triggers in the pathogenesis of SSc.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/genética , Antígenos HLA/genética , Imitación Molecular/inmunología , Esclerodermia Sistémica/genética , Negro o Afroamericano/genética , Alelos , Secuencia de Aminoácidos/genética , Antígenos Virales/genética , Antígenos Virales/inmunología , Autoantígenos/inmunología , Biología Computacional , Conjuntos de Datos como Asunto , Femenino , Predisposición Genética a la Enfermedad , Antígenos HLA/inmunología , Humanos , Masculino , Mimiviridae/inmunología , Phycodnaviridae/inmunología , Estructura Secundaria de Proteína/genética , Medición de Riesgo , Esclerodermia Sistémica/epidemiología , Esclerodermia Sistémica/inmunología , Homología de Secuencia de Aminoácido , Población Blanca/genética
18.
Hum Mutat ; 41(1): 122-128, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513304

RESUMEN

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, predisposition to cancer, and congenital abnormalities. FA is caused by pathogenic variants in any of 22 genes involved in the DNA repair pathway responsible for removing interstrand crosslinks. FANCL, an E3 ubiquitin ligase, is an integral component of the pathway, but patients affected by disease-causing FANCL variants are rare, with only nine cases reported worldwide. We report here a FANCL founder variant, anticipated to be synonymous, c.1092G>A;p.K364=, but demonstrated to induce aberrant splicing, c.1021_1092del;p.W341_K364del, that accounts for the onset of FA in 13 cases from South Asia, 12 from India and one from Pakistan. We comprehensively illustrate the pathogenic nature of the variant, provide evidence for a founder effect, and propose including this variant in genetic screening of suspected FA patients in India and Pakistan, as well as those with ancestry from these regions of South Asia.


Asunto(s)
Proteína del Grupo de Complementación L de la Anemia de Fanconi/genética , Anemia de Fanconi/epidemiología , Anemia de Fanconi/genética , Efecto Fundador , Variación Genética , Alelos , Asia/epidemiología , Aberraciones Cromosómicas , Consanguinidad , Femenino , Genotipo , Humanos , India/epidemiología , Masculino , Mutación , Prevalencia
19.
Nat Commun ; 10(1): 3195, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324766

RESUMEN

Genome analysis of diverse human populations has contributed to the identification of novel genomic loci for diseases of major clinical and public health impact. Here, we report a genome-wide analysis of type 2 diabetes (T2D) in sub-Saharan Africans, an understudied ancestral group. We analyze ~18 million autosomal SNPs in 5,231 individuals from Nigeria, Ghana and Kenya. We identify a previously-unreported genome-wide significant locus: ZRANB3 (Zinc Finger RANBP2-Type Containing 3, lead SNP p = 2.831 × 10-9). Knockdown or genomic knockout of the zebrafish ortholog results in reduction in pancreatic ß-cell number which we demonstrate to be due to increased apoptosis in islets. siRNA transfection of murine Zranb3 in MIN6 ß-cells results in impaired insulin secretion in response to high glucose, implicating Zranb3 in ß-cell functional response to high glucose conditions. We also show transferability in our study of 32 established T2D loci. Our findings advance understanding of the genetics of T2D in non-European ancestry populations.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/metabolismo , Diabetes Mellitus Tipo 2/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , África del Norte , Animales , Apoptosis , Secuencia de Bases , Glucemia , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Femenino , Edición Génica , Técnicas de Inactivación de Genes , Genotipo , Ghana , Glucosa/metabolismo , Homocigoto , Humanos , Kenia , Masculino , Ratones , Persona de Mediana Edad , Mutación , Nigeria , Polimorfismo de Nucleótido Simple , ARN Interferente Pequeño , Proteína 2 Similar al Factor de Transcripción 7/genética , Transcriptoma , Pez Cebra
20.
Neuro Oncol ; 21(8): 981-992, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-30722027

RESUMEN

BACKGROUND: Neurofibromatosis type 1 (NF1) is a tumor-predisposition disorder caused by germline mutations in NF1. NF1 patients have an 8-16% lifetime risk of developing a malignant peripheral nerve sheath tumor (MPNST), a highly aggressive soft-tissue sarcoma, often arising from preexisting benign plexiform neurofibromas (PNs) and atypical neurofibromas (ANFs). ANFs are distinct from both PN and MPNST, representing an intermediate step in malignant transformation. METHODS: In the first comprehensive genomic analysis of ANF originating from multiple patients, we performed tumor/normal whole-exome sequencing (WES) of 16 ANFs. In addition, we conducted WES of 3 MPNSTs, copy-number meta-analysis of 26 ANFs and 28 MPNSTs, and whole transcriptome sequencing analysis of 5 ANFs and 5 MPNSTs. RESULTS: We identified a low number of mutations (median 1, range 0-5) in the exomes of ANFs (only NF1 somatic mutations were recurrent), and frequent deletions of CDKN2A/B (69%) and SMARCA2 (42%). We determined that polycomb repressor complex 2 (PRC2) genes EED and SUZ12 were frequently mutated, deleted, or downregulated in MPNSTs but not in ANFs. Our pilot gene expression study revealed upregulated NRAS, MDM2, CCND1/2/3, and CDK4/6 in ANFs and MPNSTs, and overexpression of EZH2 in MPNSTs only. CONCLUSIONS: The PN-ANF transition is primarily driven by the deletion of CDKN2A/B. Further progression from ANF to MPNST likely involves broad chromosomal rearrangements and frequent inactivation of the PRC2 genes, loss of the DNA repair genes, and copy-number increase of signal transduction and cell-cycle and pluripotency self-renewal genes.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibroma Plexiforme , Neurofibroma , Neurofibromatosis 1 , Neurofibrosarcoma , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Humanos , Mutación/genética , Neurofibromatosis 1/genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...