Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Opt Lett ; 49(9): 2513-2516, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691757

RESUMEN

Hyperspectral coherent Raman scattering microscopy provides a significant improvement in acquisition time compared to spontaneous Raman scattering yet still suffers from the time required to sweep through individual wavenumbers. To address this, we present the use of a pulse shaper with a 2D spatial light modulator for phase- and amplitude-based shaping of the Stokes beam to create programmable spectrally tailored excitation envelopes. This enables collection of useful spectral information in a more rapid and efficient manner.

2.
J Biomed Opt ; 29(Suppl 2): S22704, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584966

RESUMEN

Significance: Full-field optical coherence microscopy (FF-OCM) is a prevalent technique for backscattering and phase imaging with epi-detection. Traditional methods have two limitations: suboptimal utilization of functional information about the sample and complicated optical design with several moving parts for phase contrast. Aim: We report an OCM setup capable of generating dynamic intensity, phase, and pseudo-spectroscopic contrast with single-shot full-field video-rate imaging called bichromatic tetraphasic (BiTe) full-field OCM with no moving parts. Approach: BiTe OCM resourcefully uses the phase-shifting properties of anti-reflection (AR) coatings outside the rated bandwidths to create four unique phase shifts, which are detected with two emission filters for spectroscopic contrast. Results: BiTe OCM overcomes the disadvantages of previous FF-OCM setup techniques by capturing both the intensity and phase profiles without any artifacts or speckle noise for imaging scattering samples in three-dimensional (3D). BiTe OCM also utilizes the raw data effectively to generate three complementary contrasts: intensity, phase, and color. We demonstrate BiTe OCM to observe cellular dynamics, image live, and moving micro-animals in 3D, capture the spectroscopic hemodynamics of scattering tissues along with dynamic intensity and phase profiles, and image the microstructure of fall foliage with two different colors. Conclusions: BiTe OCM can maximize the information efficiency of FF-OCM while maintaining overall simplicity in design for quantitative, dynamic, and spectroscopic characterization of biological samples.


Asunto(s)
Microscopía , Tomografía de Coherencia Óptica , Animales , Microscopía/métodos , Tomografía de Coherencia Óptica/métodos , Microscopía de Contraste de Fase
3.
Sci Rep ; 14(1): 5528, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448508

RESUMEN

Extracellular vesicles (EVs) have been implicated in metastasis and proposed as cancer biomarkers. However, heterogeneity and small size makes assessments of EVs challenging. Often, EVs are isolated from biofluids, losing spatial and temporal context and thus lacking the ability to access EVs in situ in their native microenvironment. This work examines the capabilities of label-free nonlinear optical microscopy to extract biochemical optical metrics of EVs in ex vivo tissue and EVs isolated from biofluids in cases of human breast cancer, comparing these metrics within and between EV sources. Before surgery, fresh urine and blood serum samples were obtained from human participants scheduled for breast tumor surgery (24 malignant, 6 benign) or healthy participants scheduled for breast reduction surgery (4 control). EVs were directly imaged both in intact ex vivo tissue that was removed during surgery and in samples isolated from biofluids by differential ultracentrifugation. Isolated EVs and freshly excised ex vivo breast tissue samples were imaged with custom nonlinear optical microscopes to extract single-EV optical metabolic signatures of NAD(P)H and FAD autofluorescence. Optical metrics were significantly altered in cases of malignant breast cancer in biofluid-derived EVs and intact tissue EVs compared to control samples. Specifically, urinary isolated EVs showed elevated NAD(P)H fluorescence lifetime in cases of malignant cancer, serum-derived isolated EVs showed decreased optical redox ratio in stage II cancer, but not earlier stages, and ex vivo breast tissue showed an elevated number of EVs in cases of malignant cancer. Results further indicated significant differences in the measured optical metabolic signature based on EV source (urine, serum and tissue) within individuals.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Vesículas Extracelulares , Humanos , Femenino , NAD , Biopsia , Mama , Microambiente Tumoral
4.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38328159

RESUMEN

Optimal imaging strategies remain underdeveloped to maximize information for fluorescence microscopy while minimizing the harm to fragile living systems. Taking hint from the supercontinuum generation in ultrafast laser physics, we generated supercontinuum fluorescence from untreated unlabeled live samples before nonlinear photodamage onset. Our imaging achieved high-content cell phenotyping and tissue histology, identified bovine embryo polarization, quantified aging-related stress across cell types and species, demystified embryogenesis before and after implantation, sensed drug cytotoxicity in real-time, scanned brain area for targeted patching, optimized machine learning to track small moving organisms, induced two-photon phototropism of leaf chloroplasts under two-photon photosynthesis, unraveled microscopic origin of autumn colors, and interrogated intestinal microbiome. The results enable a facility-type microscope to freely explore vital molecular biology across life sciences.

5.
Commun Biol ; 6(1): 980, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749184

RESUMEN

Pancreatic cancer is a devastating disease often detected at later stages, necessitating swift and effective chemotherapy treatment. However, chemoresistance is common and its mechanisms are poorly understood. Here, label-free multi-modal nonlinear optical microscopy was applied to study microstructural and functional features of pancreatic tumors in vivo to monitor inter- and intra-tumor heterogeneity and treatment response. Patient-derived xenografts with human pancreatic ductal adenocarcinoma were implanted into mice and characterized over five weeks of intraperitoneal chemotherapy (FIRINOX or Gem/NabP) with known responsiveness/resistance. Resistant and responsive tumors exhibited a similar initial metabolic response, but by week 5 the resistant tumor deviated significantly from the responsive tumor, indicating that a representative response may take up to five weeks to appear. This biphasic metabolic response in a chemoresistant tumor reveals the possibility of intra-tumor spatiotemporal heterogeneity of drug responsiveness. These results, though limited by small sample size, suggest the possibility for further work characterizing chemoresistance mechanisms using nonlinear optical microscopy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Xenoinjertos , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Modelos Animales de Enfermedad
6.
Anal Chem ; 95(29): 10957-10965, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37450658

RESUMEN

Understanding drug fingerprints in complex biological samples is essential for the development of a drug. Hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) microscopy, a label-free nondestructive chemical imaging technique, can profile biological samples based on their endogenous vibrational contrast. Here, we propose a deep learning-assisted HS-CARS imaging approach for the investigation of drug fingerprints and their localization at single-cell resolution. To identify and localize drug fingerprints in complex biological systems, an attention-based deep neural network, hyperspectral attention net (HAN), was developed. By formulating the task to a multiple instance learning problem, HAN highlights informative regions through the attention mechanism when being trained on whole-image labels. Using the proposed technique, we investigated the drug fingerprints of a hepatitis B virus therapy in murine liver tissues. With the increase in drug dosage, higher classification accuracy was observed, with an average area under the curve (AUC) of 0.942 for the high-dose group. Besides, highly informative tissue structures predicted by HAN demonstrated a high degree of similarity with the drug localization shown by the in situ hybridization staining results. These results demonstrate the potential of the proposed deep learning-assisted optical imaging technique for the label-free profiling, identification, and localization of drug fingerprints in biological samples, which can be extended to nonperturbative investigations of complex biological systems under various biological conditions.


Asunto(s)
Microscopía , Espectrometría Raman , Animales , Ratones , Microscopía/métodos , Espectrometría Raman/métodos , Hígado , Redes Neurales de la Computación
7.
RNA ; 29(10): 1575-1590, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37460153

RESUMEN

Current methods for detecting unlabeled antisense oligonucleotide (ASO) drugs rely on immunohistochemistry (IHC) and/or conjugated molecules, which lack sufficient sensitivity, specificity, and resolution to fully investigate their biodistribution. Our aim was to demonstrate the qualitative and quantitative distribution of unlabeled bepirovirsen, a clinical stage ASO, in livers and kidneys of dosed mice using novel staining and imaging technologies at subcellular resolution. ASOs were detected in formalin-fixed paraffin-embedded (FFPE) and frozen tissues using an automated chromogenic in situ hybridization (ISH) assay: miRNAscope. This was then combined with immunohistochemical detection of cell lineage markers. ASO distribution in hepatocytes versus nonparenchymal cell lineages was quantified using HALO AI image analysis. To complement this, hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) imaging microscopy was used to specifically detect the unique cellular Raman spectral signatures following ASO treatment. Bepirovirsen was localized primarily in nonparenchymal liver cells and proximal renal tubules. Codetection of ASO with distinct cell lineage markers of liver and kidney populations aided target cell identity facilitating quantification. Positive liver signal was quantified using HALO AI, with 12.9% of the ASO localized to the hepatocytes and 87.1% in nonparenchymal cells. HS-CARS imaging specifically detected ASO fingerprints based on the unique vibrational signatures following unlabeled ASO treatment in a totally nonperturbative manner at subcellular resolution. Together, these novel detection and imaging modalities represent a significant increase in our ability to detect unlabeled ASOs in tissues, demonstrating improved levels of specificity and resolution. These methods help us understand their underlying mechanisms of action and ultimately improve the therapeutic potential of these important drugs for treating globally significant human diseases.


Asunto(s)
Hígado , Oligonucleótidos Antisentido , Ratones , Humanos , Animales , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Distribución Tisular , Hígado/diagnóstico por imagen , Hígado/metabolismo , Hibridación in Situ , Coloración y Etiquetado
8.
IEEE J Sel Top Quantum Electron ; 29(4 Biophotonics)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37193134

RESUMEN

Hematoxylin and eosin (H&E) staining, the century-old technique, has been the gold standard tool for pathologists to detect anomalies in tissues and diseases such as cancer. H&E staining is a cumbersome, time-consuming process that delays and wastes precious minutes during an intraoperative diagnosis. However, even in the modern era, real-time label-free imaging techniques such as simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy have delivered several more layers of information to characterize a tissue with high precision. Still, they have yet to translate to the clinic. The slow translation rate can be attributed to the lack of direct comparisons between the old and new techniques. Our approach to solving this problem is to: 1) reduce dimensions by pre-sectioning the tissue in 500 µm slices, and 2) produce fiducial laser markings which appear in both SLAM and histological imaging. High peak-power femtosecond laser pulses enable ablation in a controlled and contained manner. We perform laser marking on a grid of points encompassing the SLAM region of interest. We optimize laser power, numerical aperture, and timing to produce axially extended marking, hence multilayered fiducial markers, with minimal damage to the surrounding tissues. We performed this co-registration over an area of 3 × 3 mm2 of freshly excised mouse kidney and intestine, followed by standard H&E staining. Reduced dimensionality and the use of laser markings provided a comparison of the old and new techniques, giving a wealth of correlative information and elevating the potential of translating nonlinear microscopy to the clinic for rapid pathological assessment.

9.
J Assoc Res Otolaryngol ; 24(3): 325-337, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253962

RESUMEN

Otitis media (OM), a common ear infection, is characterized by the presence of an accumulated middle ear effusion (MEE) in a normally air-filled middle ear cavity. While assessing the MEE plays a critical role in the overall management of OM, identifying and examining the MEE is challenging with the current diagnostic tools since the MEE is located behind the semi-opaque eardrum. The objective of this cross-sectional, observational study is to non-invasively visualize and characterize MEEs and bacterial biofilms in the middle ear. A portable, handheld, otoscope-integrated optical coherence tomography (OCT) system combined with novel analytical methods has been developed. In vivo middle ear OCT images were acquired from 53 pediatric subjects (average age of 3.9 years; all awake during OCT imaging) diagnosed with OM and undergoing a surgical procedure (ear tube surgery) to aspirate the MEE and aerate the middle ear. In vivo middle ear OCT acquired prior to the surgery was compared with OCT of the freshly extracted MEEs, clinical diagnosis, and post-operative evaluations. Among the subjects who were identified with the presence of MEEs, 89.6% showed the presence of the TM-adherent biofilm in in vivo OCT. This study provides an atlas of middle ear OCT images exhibiting a range of depth-resolved MEE features, which can only be visualized and assessed non-invasively through OCT. Quantitative metrics of OCT images acquired prior to the surgery were statistically correlated with surgical evaluations of MEEs. Measurements of MEE characteristics will provide new readily available information that can lead to improved diagnosis and management strategies for the highly prevalent OM in children.


Asunto(s)
Otitis Media con Derrame , Otitis Media , Niño , Humanos , Preescolar , Otitis Media con Derrame/diagnóstico , Estudios Transversales , Otitis Media/diagnóstico por imagen , Otitis Media/microbiología , Oído Medio/diagnóstico por imagen , Biopelículas
10.
Artículo en Inglés | MEDLINE | ID: mdl-36479543

RESUMEN

Otitis media (OM) is a common disease of the middle ear, affecting 80% of children before the age of three. The otoscope, a simple illuminated magnifier, is the standard clinical diagnostic tool to observe the middle ear. However, it has limited contrast to detect signs of infection, such as clearly identifying and characterizing middle ear fluid or biofilms that accumulate within the middle ear. Likewise, invasive sampling of every subject is not clinically indicated nor practical. Thus, collecting accurate noninvasive diagnostic factors is vital for clinicians to deliver a precise diagnosis and effective treatment regimen. To address this need, a combined benchtop Raman spectroscopy (RS) and optical coherence tomography (OCT) system was developed. Together, RS-OCT can non-invasively interrogate the structural and biochemical signatures of the middle ear under normal and infected conditions.In this paper, in vivo RS scans from pediatric clinical human subjects presenting with OM were evaluated in parallel with RS-OCT data of physiologically relevant in vitro ear models. Component-level characterization of a healthy tympanic membrane and malleus bone, as well as OM-related middle ear fluid, identified the optimal position within the ear for RS-OCT data collection. To address the design challenges in developing a system specific to clinical use, a prototype non-contact multimodal handheld probe was built and successfully tested in vitro. Design criteria have been developed to successfully address imaging constraints imposed by physiological characteristics of the ear and optical safety limits. Here, we present the pathway for translation of RS-OCT for non-invasive detection of OM.

11.
J Biomed Opt ; 27(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35643823

RESUMEN

SIGNIFICANCE: Needle biopsy (NB) procedures are important for the initial diagnosis of many types of cancer. However, the possibility of NB specimens being unable to provide diagnostic information, (i.e., non-diagnostic sampling) and the time-consuming histological evaluation process can cause delays in diagnoses that affect patient care. AIM: We aim to demonstrate the advantages of this label-free multimodal nonlinear optical imaging (NLOI) technique as a non-destructive point-of-procedure evaluation method for NB tissue cores, for the visualization and characterization of the tissue microenvironment. APPROACH: A portable, label-free, multimodal NLOI system combined second-harmonic generation (SHG) and third-harmonic generation and two- and three-photon autofluorescence (2PF, 3PF) microscopy. It was used for intraoperative imaging of fresh NB tissue cores acquired during canine cancer surgeries, which involved liver, lung, and mammary tumors as well as soft-tissue sarcoma; in total, eight canine patients were recruited. An added tissue culture chamber enabled the use of this NLOI system for longitudinal imaging of fresh NB tissue cores taken from an induced rat mammary tumor and healthy mouse livers. RESULTS: The intraoperative NLOI system was used to assess fresh canine NB specimens during veterinary cancer surgeries. Histology-like morphological features were visualized by the combination of four NLOI modalities at the point-of-procedure. The NLOI results provided quantitative information on the tissue microenvironment such as the collagen fiber orientation using Fourier-domain SHG analysis and metabolic profiling by optical redox ratio (ORR) defined by 2PF/(2PF + 3PF). The analyses showed that the canine mammary tumor had more randomly oriented collagen fibers compared to the tumor margin, and hepatocarcinoma had a wider distribution of ORR with a lower mean value compared to the liver fibrosis and the normal-appearing liver. Moreover, the loss of metabolic information during tissue degradation of fresh murine NB specimens was shown by overall intensity decreases in all channels and an increase of mean ORR from 0.94 (standard deviation 0.099) to 0.97 (standard deviation 0.077) during 1-h longitudinal imaging of a rat mammary tumor NB specimen. The tissue response to staurosporine (STS), an apoptotic inducer, from fresh murine liver NB specimens was also observed. The mean ORR decreased from 0.86 to 0.74 in the first 40 min and then increased to 0.8 during the rest of the hour of imaging, compared to the imaging results without the addition of STS, which showed a continuous increase of ORR from 0.72 to 0.75. CONCLUSIONS: A label-free, multimodal NLOI platform reveals microstructural and metabolic information of the fresh NB cores during intraoperative cancer imaging. This system has been demonstrated on animal models to show its potential to provide a more comprehensive histological assessment and a better understanding of the unperturbed tumor microenvironment. Considering tissue degradation, or loss of viability upon fixation, this intraoperative NLOI system has the advantage of immediate assessment of freshly excised tissue specimens at the point of procedure.


Asunto(s)
Neoplasias de la Mama , Imagen Multimodal , Animales , Biopsia con Aguja , Colágeno , Perros , Femenino , Humanos , Ratones , Imagen Óptica , Ratas , Microambiente Tumoral
12.
Sci Rep ; 12(1): 3438, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236862

RESUMEN

Label-free optical microscopy has matured as a noninvasive tool for biological imaging; yet, it is criticized for its lack of specificity, slow acquisition and processing times, and weak and noisy optical signals that lead to inaccuracies in quantification. We introduce FOCALS (Fast Optical Coherence, Autofluorescence Lifetime imaging, and Second harmonic generation) microscopy capable of generating NAD(P)H fluorescence lifetime, second harmonic generation (SHG), and polarization-sensitive optical coherence microscopy (OCM) images simultaneously. Multimodal imaging generates quantitative metabolic and morphological profiles of biological samples in vitro, ex vivo, and in vivo. Fast analog detection of fluorescence lifetime and real-time processing on a graphical processing unit enables longitudinal imaging of biological dynamics. We detail the effect of optical aberrations on the accuracy of FLIM beyond the context of undistorting image features. To compensate for the sample-induced aberrations, we implemented a closed-loop single-shot sensorless adaptive optics solution, which uses computational adaptive optics of OCM for wavefront estimation within 2 s and improves the quality of quantitative fluorescence imaging in thick tissues. Multimodal imaging with complementary contrasts improves the specificity and enables multidimensional quantification of the optical signatures in vitro, ex vivo, and in vivo, fast acquisition and real-time processing improve imaging speed by 4-40 × while maintaining enough signal for quantitative nonlinear microscopy, and adaptive optics improves the overall versatility, which enable FOCALS microscopy to overcome the limits of traditional label-free imaging techniques.


Asunto(s)
Imagen Óptica , Óptica y Fotónica , Microscopía de Polarización
13.
Opt Express ; 29(23): 37759-37775, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808842

RESUMEN

Fluorescence lifetime imaging microscopy (FLIM) characterizes samples by examining the temporal properties of fluorescence emission, providing useful contrast within samples based on the local physical and biochemical environment of fluorophores. Despite this, FLIM applications have been limited in scope by either poor accuracy or long acquisition times. Here, we present a method for computational single-photon counting of directly sampled time-domain FLIM data that is capable of accurate fluorescence lifetime and intensity measurements while acquiring over 160 Mega-counts-per-second with sub-nanosecond time resolution between consecutive photon counts. We demonstrate that our novel method of Single-photon PEak Event Detection (SPEED) is more accurate than direct pulse sampling and faster than established photon counting FLIM methods. We further show that SPEED can be implemented for imaging and quantifying samples that benefit from higher -throughput and -dynamic range imaging with real-time GPU-accelerated processing and use this capability to examine the NAD(P)H-related metabolic dynamics of apoptosis in human breast cancer cells. Computational methods for photon counting such as SPEED open up more opportunities for fast and accurate FLIM imaging and additionally provide a basis for future innovation into alternative FLIM techniques.


Asunto(s)
Fluorescencia , Microscopía Fluorescente/métodos , Fotones , Algoritmos , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Fluoresceína , Colorantes Fluorescentes , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/instrumentación , Modelos Animales , NADP/metabolismo , Radiometría/instrumentación , Radiometría/métodos , Ratas , Rodaminas , Factores de Tiempo
14.
Biomed Opt Express ; 12(7): 4003-4019, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34457395

RESUMEN

Two-photon fluorescence lifetime imaging microscopy (FLIM) is a widely used technique in biomedical optical imaging. Presently, many two-photon time-domain FLIM setups are limited by long acquisition and postprocessing times that decrease data throughput and inhibit the ability to image fast sub-second processes. Here, we present a versatile two-photon FLIM setup capable of video-rate (up to 25 fps) imaging with graphics processing unit (GPU)-accelerated pixelwise phasor analysis displayed and saved simultaneously with acquisition. The system uses an analog output photomultiplier tube in conjunction with 12-bit digitization at 3.2 GHz to overcome the limited maximum acceptable photon rate associated with the photon counting electronics in many FLIM systems. This allows for higher throughput FLIM acquisition and analysis, and additionally enables the user to assess sample fluorescence lifetime in real-time. We further explore the capabilities of the system to examine the kinetics of Rhodamine B uptake by human breast cancer cells and characterize the effect of pixel dwell time on the reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) autofluorescence lifetime estimation accuracy.

15.
Biomed Opt Express ; 12(5): 3021-3036, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34168912

RESUMEN

We report an automated differentiation model for classifying malignant tumor, fibro-adipose, and stroma in human breast tissues based on polarization-sensitive optical coherence tomography (PS-OCT). A total of 720 PS-OCT images from 72 sites of 41 patients with H&E histology-confirmed diagnoses as the gold standard were employed in this study. The differentiation model is trained by the features extracted from both one standard OCT-based metric (i.e., intensity) and four PS-OCT-based metrics (i.e., phase difference between two channels (PD), phase retardation (PR), local phase retardation (LPR), and degree of polarization uniformity (DOPU)). Further optimized by forward searching and validated by leave-one-site-out-cross-validation (LOSOCV) method, the best feature subset was acquired with the highest overall accuracy of 93.5% for the model. Furthermore, to show the superiority of our differentiation model based on PS-OCT images over standard OCT images, the best model trained by intensity-only features (usually obtained by standard OCT systems) was also obtained with an overall accuracy of 82.9%, demonstrating the significance of the polarization information in breast tissue differentiation. The high performance of our differentiation model suggests the potential of using PS-OCT for intraoperative human breast tissue differentiation during the surgical resection of breast cancer.

16.
NPJ Biofilms Microbiomes ; 7(1): 48, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078901

RESUMEN

Otitis media (OM), known as a middle ear infection, is the leading cause of antibiotic prescriptions for children. With wide-spread use of antibiotics in OM, resistance to antibiotics continues to decrease the efficacy of the treatment. Furthermore, as the presence of a middle ear biofilm has contributed to this reduced susceptibility to antimicrobials, effective interventions are necessary. A miniaturized 3D-printed microplasma jet array has been developed to inactivate Pseudomonas aeruginosa, a common bacterial strain associated with OM. The experiments demonstrate the disruption of planktonic and biofilm P. aeruginosa by long-lived molecular species generated by microplasma, as well as the synergy of combining microplasma treatment with antibiotic therapy. In addition, a middle ear phantom model was developed with an excised rat eardrum to investigate the antimicrobial effects of microplasma on bacteria located behind the eardrum, as in a patient-relevant setup. These results suggest the potential for microplasma as a new treatment paradigm for OM.


Asunto(s)
Otitis Media/microbiología , Gases em Plasma/administración & dosificación , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Biomarcadores , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana/instrumentación , Pruebas de Sensibilidad Microbiana/métodos , Otitis Media/diagnóstico , Otitis Media/tratamiento farmacológico , Infecciones por Pseudomonas/diagnóstico , Infecciones por Pseudomonas/tratamiento farmacológico , Ratas , Tomografía de Coherencia Óptica
17.
Biotechnol J ; 16(7): e2000629, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33951311

RESUMEN

Chinese hamster ovary (CHO) cells are routinely used in the biopharmaceutical industry for production of therapeutic monoclonal antibodies (mAbs). Although multiple offline and time-consuming measurements of spent media composition and cell viability assays are used to monitor the status of culture in biopharmaceutical manufacturing, the day-to-day changes in the cellular microenvironment need further in-depth characterization. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was used as a tool to directly probe into the health of CHO cells from a bioreactor, exploiting the autofluorescence of intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H), an enzymatic cofactor that determines the redox state of the cells. A custom-built multimodal microscope with two-photon FLIM capability was utilized to monitor changes in NAD(P)H fluorescence for longitudinal characterization of a changing environment during cell culture processes. Three different cell lines were cultured in 0.5 L shake flasks and 3 L bioreactors. The resulting FLIM data revealed differences in the fluorescence lifetime parameters, which were an indicator of alterations in metabolic activity. In addition, a simple principal component analysis (PCA) of these optical parameters was able to identify differences in metabolic progression of two cell lines cultured in bioreactors. Improved understanding of cell health during antibody production processes can result in better streamlining of process development, thereby improving product titer and verification of scale-up. To our knowledge, this is the first study to use FLIM as a label-free measure of cellular metabolism in a biopharmaceutically relevant and clinically important CHO cell line.


Asunto(s)
Productos Biológicos , Animales , Células CHO , Cricetinae , Cricetulus , Microscopía Fluorescente , NAD
18.
Opt Lett ; 46(9): 2071-2074, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929421

RESUMEN

Defocus aberration in optical systems, including optical coherence tomography (OCT) systems employing Gaussian illumination, gives rise to the well-known compromise between transverse resolution and depth-of-field. This results in blurry images when out-of-focus, whilst other low-order aberrations (e.g., astigmatism, coma, etc.) present in both the OCT system and biological samples further reduce image resolution and contrast. Computational adaptive optics (CAO) is a computed optical interferometric imaging technique that modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations and provide improvement of the image quality throughout the three-dimensional (3D) volume. In this Letter, we report the first implementation of CAO for polarization-sensitive OCT to correct defocus and other low-order aberrations, providing enhanced polarization-sensitive imaging contrast (i.e., intensity and phase retardation) on a 3D OCT phantom, molded plastics, ex vivo chicken breast tissue, and ex vivo human breast cancer tissue.


Asunto(s)
Tomografía de Coherencia Óptica , Procesamiento de Imagen Asistido por Computador , Interferometría , Fantasmas de Imagen
19.
Theranostics ; 11(12): 5620-5633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897871

RESUMEN

Rationale: Magnetic nanoparticle hyperthermia (MH) therapy is capable of thermally damaging tumor cells, yet a biomechanically-sensitive monitoring method for the applied thermal dosage has not been established. Biomechanical changes to tissue are known indicators for tumor diagnosis due to its association with the structural organization and composition of tissues at the cellular and molecular level. Here, by exploiting the theranostic functionality of magnetic nanoparticles (MNPs), we aim to explore the potential of using stiffness-based metrics that reveal the intrinsic biophysical changes of in vivo melanoma tumors after MH therapy. Methods: A total of 14 melanoma-bearing mice were intratumorally injected with dextran-coated MNPs, enabling MH treatment upon the application of an alternating magnetic field (AMF) at 64.7 kHz. The presence of the MNP heating sources was detected by magnetomotive optical coherence tomography (MM-OCT). For the first time, the elasticity alterations of the hyperthermia-treated, MNP-laden, in vivo tumors were also measured with magnetomotive optical coherence elastography (MM-OCE), based on the mechanical resonant frequency detected. To investigate the correlation between stiffness changes and the intrinsic biological changes, histopathology was performed on the excised tumor after the in vivo measurements. Results: Distinct shifts in mechanical resonant frequency were observed only in the MH-treated group, suggesting a heat-induced stiffness change in the melanoma tumor. Moreover, tumor cellularity, protein conformation, and temperature rise all play a role in tumor stiffness changes after MH treatment. With low cellularity, tumor softens after MH even with low temperature elevation. In contrast, with high cellularity, tumor softening occurs only with a low temperature rise, which is potentially due to protein unfolding, whereas tumor stiffening was seen with a higher temperature rise, likely due to protein denaturation. Conclusions: This study exploits the theranostic functionality of MNPs and investigates the MH-induced stiffness change on in vivo melanoma-bearing mice with MM-OCT and MM-OCE for the first time. It was discovered that the elasticity alteration of the melanoma tumor after MH treatment depends on both thermal dosage and the morphological features of the tumor. In summary, changes in tissue-level elasticity can potentially be a physically and physiologically meaningful metric and integrative therapeutic marker for MH treatment, while MM-OCE can be a suitable dosimetry technique.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Hipertermia/diagnóstico por imagen , Nanopartículas de Magnetita/química , Melanoma/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Animales , Fenómenos Biomecánicos , Línea Celular Tumoral , Campos Magnéticos , Magnetismo/métodos , Ratones , Ratones Endogámicos C57BL
20.
Cancer Res ; 81(9): 2534-2544, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33741692

RESUMEN

Label-free nonlinear microscopy enables nonperturbative visualization of structural and metabolic contrast within living cells in their native tissue microenvironment. Here a computational pipeline was developed to provide a quantitative view of the microenvironmental architecture within cancerous tissue from label-free nonlinear microscopy images. To enable single-cell and single-extracellular vesicle (EV) analysis, individual cells, including tumor cells and various types of stromal cells, and EVs were segmented by a multiclass pixelwise segmentation neural network and subsequently analyzed for their metabolic status and molecular structure in the context of the local cellular neighborhood. By comparing cancer tissue with normal tissue, extensive tissue reorganization and formation of a patterned cell-EV neighborhood was observed in the tumor microenvironment. The proposed analytic pipeline is expected to be useful in a wide range of biomedical tasks that benefit from single-cell, single-EV, and cell-to-EV analysis. SIGNIFICANCE: The proposed computational framework allows label-free microscopic analysis that quantifies the complexity and heterogeneity of the tumor microenvironment and opens possibilities for better characterization and utilization of the evolving cancer landscape.


Asunto(s)
Biología Computacional/métodos , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Microscopía Óptica no Lineal/métodos , Microambiente Tumoral , Animales , Células Endoteliales/metabolismo , Eritrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Fibroblastos/metabolismo , Linfocitos/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Redes Neurales de la Computación , Imagen Óptica , Ratas Endogámicas WF , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA