Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 119(3): 813-825, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36166408

RESUMEN

AIMS: Components of bone morphogenetic protein (BMP) signalling have been implicated in both pathogenesis of pulmonary arterial hypertension (PAH) and endothelial-mesenchymal transition (EndoMT). In particular, the importance of BMP type 2 receptor in these processes has been extensively analysed. However, the contribution of BMP type 1 receptors (BMPR1s) to the onset of PAH and EndoMT remains poorly understood. BMPR1A, one of BMPR1s, was recently implicated in the pathogenesis of PAH, and was found to be down-regulated in the lungs of PAH patients, neither the downstream mechanism nor its contribution to EndoMT has been described. Therefore, we aim to delineate the role of endothelial BMPR1A in modulating EndoMT and pathogenesis of PAH. METHODS AND RESULTS: We find that BMPR1A knockdown in endothelial cells (ECs) induces hallmarks of EndoMT, and deletion of endothelial Bmpr1a in adult mice (Bmpr1aiECKO) leads to development of PAH-like symptoms due to excessive EndoMT. By lineage tracing, we show that endothelial-derived smooth muscle cells are increased in endothelial Bmpr1a-deleted mice. Mechanistically, we identify ZEB1 as a primary target for BMPR1A in this setting; upon BMPR1A activation, ID2 physically interacts and sequesters ZEB1 to attenuate transcription of Tgfbr2, which in turn lowers the responses of ECs towards transforming growth factor beta (TGFß) stimulation and prevents excessive EndoMT. In Bmpr1aiECKO mice, administering endothelial targeting lipid nanoparticles containing siRNA against Tgfbr2 effectively ameliorate PAH, reiterating the importance of BMPR1A-ID2/ZEB1-TGFBR2 axis in modulating progression of EndoMT and pathogenesis of PAH. CONCLUSIONS: We demonstrate that BMPR1A is key to maintain endothelial identity and to prevent excessive EndoMT. We identify BMPR1A-induced interaction between ID2 and ZEB1 is the key regulatory step for onset of EndoMT and pathogenesis of PAH. Our findings indicate that BMPR1A-ID2/ZEB1-TGFBR2 signalling axis could serve as a potential novel therapeutic target for PAH and other EndoMT-related vascular disorders.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Hipertensión Pulmonar , Proteína 2 Inhibidora de la Diferenciación , Hipertensión Arterial Pulmonar , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Animales , Ratones , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Transición Epitelial-Mesenquimal , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
3.
Nat Med ; 27(7): 1178-1186, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33953384

RESUMEN

Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anciano , Anciano de 80 o más Años , COVID-19/mortalidad , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Portador Sano/inmunología , Femenino , Humanos , Inmunidad Humoral , Cinética , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Factores de Tiempo
4.
bioRxiv ; 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33655244

RESUMEN

Complement activation has been implicated in the pathogenesis of severe SARS-CoV-2 infection. However, it remains to be determined whether increased complement activation is a broad indicator of critical illness (and thus, no different in COVID-19). It is also unclear which pathways are contributing to complement activation in COVID-19, and, if complement activation is associated with certain features of severe SARS-CoV-2 infection, such as endothelial injury and hypercoagulability. To address these questions, we investigated complement activation in the plasma from patients with COVID-19 prospectively enrolled at two tertiary care centers. We compared our patients to two non-COVID cohorts: (a) patients hospitalized with influenza, and (b) patients admitted to the intensive care unit (ICU) with acute respiratory failure requiring invasive mechanical ventilation (IMV). We demonstrate that circulating markers of complement activation (i.e., sC5b-9) are elevated in patients with COVID-19 compared to those with influenza and to patients with non-COVID-19 respiratory failure. Further, the results facilitate distinguishing those who are at higher risk of worse outcomes such as requiring ICU admission, or IMV. Moreover, the results indicate enhanced activation of the alternative complement pathway is most prevalent in patients with severe COVID-19 and is associated with markers of endothelial injury (i.e., Ang2) as well as hypercoagulability (i.e., thrombomodulin and von Willebrand factor). Our findings identify complement activation to be a distinctive feature of COVID-19, and provide specific targets that may be utilized for risk prognostication, drug discovery and personalized clinical trials.

5.
Blood Adv ; 5(5): 1164-1177, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33635335

RESUMEN

Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of more than 3300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, hepatocyte growth factor, interleukin-8, and granulocyte colony-stimulating factor, which were the strongest predictors of critical illness. Evidence of neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, these data suggest a central role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular markers that distinguish patients at risk of future clinical decompensation.


Asunto(s)
COVID-19/inmunología , Activación Neutrófila , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/sangre , COVID-19/mortalidad , Enfermedad Crítica/epidemiología , Enfermedad Crítica/mortalidad , Estudios Transversales , Femenino , Hospitalización , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Pronóstico , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad
6.
N Biotechnol ; 63: 1-9, 2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-33588094

RESUMEN

The promise of using induced pluripotent stem cells (iPSCs) for cellular therapies has been hampered by the lack of easily isolatable and well characterized source cells whose genomes have undergone minimal changes during their processing. Blood-derived late-outgrowth endothelial progenitor cells (EPCs) are used for disease modeling and have potential therapeutic uses including cell transplantation and the translation of induced pluripotent stem cell (iPSC) derivatives. However, the current isolation of EPCs has been inconsistent and requires at least 40-80 mL of blood, limiting their wider use. In addition, previous EPC reprogramming methods precluded the translation of EPC-derived iPSCs to the clinic. Here a series of clinically-compatible advances in the isolation and reprogramming of EPCs is presented, including a reduction of blood sampling volumes to 10 mL and use of highly efficient RNA-based reprogramming methods together with autologous human serum, resulting in clinically relevant iPSCs carrying minimal copy number variations (CNVs) compared to their parent line.


Asunto(s)
Células Progenitoras Endoteliales/citología , Trasplante de Células Madre , Reprogramación Celular , Humanos
7.
Pulm Circ ; 10(4): 2045894020966547, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282193

RESUMEN

Increase in thrombotic and microvascular complications is emerging to be a key feature of patients with critical illness associated with COVID-19 infection. While endotheliopathy is thought to be a key factor of COVID-19-associated coagulopathy, markers indicative of this process that are prognostic of disease severity have not been well-established in this patient population. Using plasma profiling of patients with COVID-19, we identified circulating markers that segregated with disease severity: markers of angiogenesis (VEGF-A, PDGF-AA and PDGF-AB/BB) were elevated in hospitalized patients with non-critical COVID-19 infection, while markers of endothelial injury (angiopoietin-2, FLT-3L, PAI-1) were elevated in patients with critical COVID-19 infection. In survival analysis, elevated markers of endothelial injury (angiopoietin-2, follistatin, PAI-1) were strongly predictive of in-hospital mortality. Our findings demonstrate that non-critical and critical phases of COVID-19 disease may be driven by distinct mechanisms involving key aspects of endothelial cell function, and identify drivers of COVID-19 pathogenesis and potential targets for future therapies.

8.
medRxiv ; 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32908988

RESUMEN

Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of over 3,300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, HGF, IL-8, and G-CSF, as the strongest predictors of critical illness. Neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, we define an essential role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular neutrophil markers that distinguish patients at risk of future clinical decompensation.

9.
Lancet Haematol ; 7(8): e575-e582, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32619411

RESUMEN

BACKGROUND: An important feature of severe acute respiratory syndrome coronavirus 2 pathogenesis is COVID-19-associated coagulopathy, characterised by increased thrombotic and microvascular complications. Previous studies have suggested a role for endothelial cell injury in COVID-19-associated coagulopathy. To determine whether endotheliopathy is involved in COVID-19-associated coagulopathy pathogenesis, we assessed markers of endothelial cell and platelet activation in critically and non-critically ill patients admitted to the hospital with COVID-19. METHODS: In this single-centre cross-sectional study, hospitalised adult (≥18 years) patients with laboratory-confirmed COVID-19 were identified in the medical intensive care unit (ICU) or a specialised non-ICU COVID-19 floor in our hospital. Asymptomatic, non-hospitalised controls were recruited as a comparator group for biomarkers that did not have a reference range. We assessed markers of endothelial cell and platelet activation, including von Willebrand Factor (VWF) antigen, soluble thrombomodulin, soluble P-selectin, and soluble CD40 ligand, as well as coagulation factors, endogenous anticoagulants, and fibrinolytic enzymes. We compared the level of each marker in ICU patients, non-ICU patients, and controls, where applicable. We assessed correlations between these laboratory results with clinical outcomes, including hospital discharge and mortality. Kaplan-Meier analysis was used to further explore the association between biochemical markers and survival. FINDINGS: 68 patients with COVID-19 were included in the study from April 13 to April 24, 2020, including 48 ICU and 20 non-ICU patients, as well as 13 non-hospitalised, asymptomatic controls. Markers of endothelial cell and platelet activation were significantly elevated in ICU patients compared with non-ICU patients, including VWF antigen (mean 565% [SD 199] in ICU patients vs 278% [133] in non-ICU patients; p<0·0001) and soluble P-selectin (15·9 ng/mL [4·8] vs 11·2 ng/mL [3·1]; p=0·0014). VWF antigen concentrations were also elevated above the normal range in 16 (80%) of 20 non-ICU patients. We found mortality to be significantly correlated with VWF antigen (r = 0·38; p=0·0022) and soluble thrombomodulin (r = 0·38; p=0·0078) among all patients. In all patients, soluble thrombomodulin concentrations greater than 3·26 ng/mL were associated with lower rates of hospital discharge (22 [88%] of 25 patients with low concentrations vs 13 [52%] of 25 patients with high concentrations; p=0·0050) and lower likelihood of survival on Kaplan-Meier analysis (hazard ratio 5·9, 95% CI 1·9-18·4; p=0·0087). INTERPRETATION: Our findings show that endotheliopathy is present in COVID-19 and is likely to be associated with critical illness and death. Early identification of endotheliopathy and strategies to mitigate its progression might improve outcomes in COVID-19. FUNDING: This work was supported by a gift donation from Jack Levin to the Benign Hematology programme at Yale, and the National Institutes of Health.


Asunto(s)
Betacoronavirus/patogenicidad , Trastornos de la Coagulación Sanguínea/patología , Infecciones por Coronavirus/complicaciones , Endotelio Vascular/patología , Neumonía Viral/complicaciones , Enfermedades Vasculares/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Trastornos de la Coagulación Sanguínea/etiología , Trastornos de la Coagulación Sanguínea/metabolismo , COVID-19 , Infecciones por Coronavirus/virología , Enfermedad Crítica , Estudios Transversales , Endotelio Vascular/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , Pronóstico , SARS-CoV-2 , Enfermedades Vasculares/etiología , Enfermedades Vasculares/metabolismo , Adulto Joven
10.
medRxiv ; 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32637968

RESUMEN

Despite over 9.3 million infected and 479,000 deaths, the pathophysiological factors that determine the wide spectrum of clinical outcomes in COVID-19 remain inadequately defined. Importantly, patients with underlying cardiovascular disease have been found to have worse clinical outcomes,1 and autopsy findings of endotheliopathy as well as angiogenesis in COVID-19 have accumulated.2,3 Nonetheless, circulating vascular markers associated with disease severity and mortality have not been reliably established. To address this limitation and better understand COVID-19 pathogenesis, we report plasma profiling of factors related to the vascular system from a series of patients admitted to Yale-New Haven Hospital with confirmed diagnosis of COVID-19 via PCR, which demonstrate significant increase in markers of angiogenesis and endotheliopathy in patients hospitalized with COVID-19.

11.
medRxiv ; 2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33398292

RESUMEN

As the global community strives to discover effective therapies for COVID-19, immunomodulatory strategies have emerged as a leading contender to combat the cytokine storm and improve clinical outcomes in patients with severe disease. Systemic corticosteroids and selective cytokine inhibitory agents have been utilized both as empiric therapies and in clinical trials. While multiple randomized, placebo controlled trials have now demonstrated that corticosteroids improve survival in patients with COVID-19,1, 2 IL-6 inhibition, which gained significant early interest based on observational studies, has not demonstrated reliable efficacy in randomized, placebo controlled trials.3, 4 To better understand the mechanistic basis of immunomodulatory therapies being implemented for treatment of COVID-19, we assessed longitudinal biochemical changes in response to such approaches in hospitalized patients with COVID-19. We demonstrate broad suppression of multiple immunomodulatory factors associated with adverse clinical outcomes in COVID-19 in patients who received corticosteroids, but no such response was seen in patients who either received tocilizumab or no immunomodulatory therapy. Our findings provide early insights into molecular signatures that correlate with immunomodulatory therapies in COVID-19 which may be useful in understanding clinical outcomes in future studies of larger patient cohorts.

12.
J Anat ; 235(2): 262-270, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31099428

RESUMEN

The path taken by the loop of Henle, from renal cortex to medulla and back, is critical to the ability of the kidney to concentrate urine and recover water. Unlike most developing tubules, which navigate as blind-ended cylinders, the loop of Henle extends as a sharply bent loop, the apex of which leads the double tubes behind it in a 'V' shape. Here, we show that, in normal kidney development, loops of Henle extend towards the centroid of the kidney with an accuracy that increases the longer they extend. Using cultured kidney rudiments, and manipulations that rotate or remove portions of the organ, we show that loop orientation depends on long-range cues from the medulla rather than either the orientation of the parent nephron or local cues in the cortex. The loops appear to be attracted to the most mature branch point of the collecting duct system but, if this is removed, they will head towards the most mature collecting duct branch available to them. Our results demonstrate the adaptive nature of guidance of this unusual example of a growing epithelium, and set the stage for later work devoted to understanding the molecules and mechanisms that underlie it.


Asunto(s)
Asa de la Nefrona/embriología , Adaptación Fisiológica , Animales , Femenino , Túbulos Renales Colectores/embriología , Ratones , Embarazo
14.
Sci Rep ; 5: 9092, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25766625

RESUMEN

Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys.


Asunto(s)
Aniones/metabolismo , Cationes/metabolismo , Riñón/embriología , Riñón/metabolismo , Organogénesis , Ingeniería de Tejidos , Animales , Transporte Biológico , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Ratones , Técnicas de Cultivo de Tejidos
15.
Elife ; 3: e04000, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25647637

RESUMEN

The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in ß-catenin activity along the axis of the nephron tubule. By modifying ß-catenin activity, we force cells within nephrons to differentiate according to the imposed ß-catenin activity level, thereby causing spatial shifts in nephron segments. The ß-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises ß-catenin activity and promotes segment identities associated with low ß-catenin activity. ß-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating ß-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/metabolismo , Nefronas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Receptores Notch/metabolismo , beta Catenina/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular , Cámaras de Difusión de Cultivos , Embrión de Mamíferos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Nefronas/citología , Nefronas/crecimiento & desarrollo , Técnicas de Cultivo de Órganos , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Transducción de Señal , beta Catenina/genética
16.
J Anat ; 226(1): 13-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25292187

RESUMEN

This report presents a novel mechanism for remodelling a branched epithelial tree. The mouse renal collecting duct develops by growth and repeated branching of an initially unbranched ureteric bud: this mechanism initially produces an almost fractal form with young branches connected to the centre of the kidney via a sequence of nodes (branch points) distributed widely throughout the developing organ. The collecting ducts of a mature kidney have a different form: from the nephrons in the renal cortex, long, straight lengths of collecting duct run almost parallel to one another through the renal medulla, and open together to the renal pelvis. Here we present time-lapse studies of E11.5 kidneys growing in culture: after about 5 days, the collecting duct trees show evidence of 'node retraction', in which the node of a 'Y'-shaped branch moves downwards, shortening the stalk of the 'Y', lengthening its arms and narrowing their divergence angle so that the 'Y' becomes a 'V'. Computer simulation suggests that node retraction can transform a spread tree, like that of an early kidney, into one with long, almost-parallel medullary rays similar to those seen in a mature real kidney.


Asunto(s)
Túbulos Renales Colectores/embriología , Modelos Biológicos , Morfogénesis/fisiología , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Simulación por Computador , Ratones , Ratones Transgénicos , Imagen de Lapso de Tiempo
17.
BMC Dev Biol ; 14: 35, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25205115

RESUMEN

BACKGROUND: Glandular organs require the development of a correctly patterned epithelial tree. These arise by iterative branching: early branches have a stereotyped anatomy, while subsequent branching is more flexible, branches spacing out to avoid entanglement. Previous studies have suggested different genetic programs are responsible for these two classes of branches. RESULTS: Here, working with the urinary collecting duct tree of mouse kidneys, we show that the transition from the initial, stereotyped, wide branching to narrower later branching is independent from previous branching events but depends instead on the proximity of other branch tips. A simple computer model suggests that a repelling molecule secreted by branches can in principle generate a well-spaced tree that switches automatically from wide initial branch angles to narrower subsequent ones, and that co-cultured trees would distort their normal shapes rather than colliding. We confirm this collision-avoidance experimentally using organ cultures, and identify BMP7 as the repelling molecule. CONCLUSIONS: We propose that self-avoidance, an intrinsically error-correcting mechanism, may be an important patterning mechanism in collecting duct branching, operating along with already-known mesenchyme-derived paracrine factors.


Asunto(s)
Riñón/embriología , Uréter/embriología , Quinasa de Linfoma Anaplásico , Animales , Tipificación del Cuerpo , Proteína Morfogenética Ósea 7/fisiología , Simulación por Computador , Riñón/anatomía & histología , Ratones Transgénicos , Modelos Biológicos , Proteínas Tirosina Quinasas Receptoras , Transducción de Señal , Técnicas de Cultivo de Tejidos
18.
Pediatr Nephrol ; 29(4): 519-24, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23989397

RESUMEN

Increasing numbers of people approaching and living with end-stage renal disease and failure of the supply of transplantable kidneys to keep pace has created an urgent need for alternative sources of new organs. One possibility is tissue engineering of new organs from stem cells. Adult kidneys are arguably too large and anatomically complex for direct construction, but engineering immature kidneys, transplanting them, and allowing them to mature within the host may be more feasible. In this review, we describe a technique that begins with a suspension of renogenic stem cells and promotes these cells' self-organization into organ rudiments very similar to foetal kidneys, with a collecting duct tree, nephrons, corticomedullary zonation and extended loops of Henle. The engineered rudiments vascularize when transplanted to appropriate vessel-rich sites in bird eggs or adult animals, and show preliminary evidence for physiological function. We hope that this approach might one day be the basis of a clinically useful technique for renal replacement therapy.


Asunto(s)
Riñón , Técnicas de Cultivo de Órganos/métodos , Células Madre/citología , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias , Animales , Humanos , Riñón/embriología , Técnicas de Cultivo de Órganos/tendencias
19.
Nephron Exp Nephrol ; 121(3-4): e79-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23235540

RESUMEN

BACKGROUND: Tissue engineering of functional kidney tissue is an important goal for clinical restoration of renal function in patients damaged by infectious, toxicological, or genetic disease. One promising approach is the use of the self-organizing abilities of embryonic kidney cells to arrange themselves, from a simply reaggregated cell suspension, into engineered organs similar to fetal kidneys. The previous state-of-the-art method for this results in the formation of a branched collecting duct tree, immature nephrons (S-shaped bodies) beside and connected to it, and supportive stroma. It does not, though, result in the significant formation of morphologically detectable loops of Henle - anatomical features of the nephron that are critical to physiological function. METHODS: We have combined the best existing technique for renal tissue engineering from cell suspensions with a low-volume culture technique that allows intact kidney rudiments to make loops of Henle to test whether engineered kidneys can produce these loops. RESULTS: The result is the formation of loops of Henle in engineered cultured 'fetal kidneys', very similar in both morphology and in number to those formed by intact organ rudiments. CONCLUSION: This brings the engineering technique one important step closer to production of a fully realistic organ.


Asunto(s)
Riñón/anatomía & histología , Asa de la Nefrona/fisiología , Técnicas de Cultivo de Órganos/métodos , Técnicas de Cultivo de Órganos/tendencias , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias , Animales , Riñón/embriología , Riñón/fisiología , Túbulos Renales/anatomía & histología , Túbulos Renales/embriología , Túbulos Renales/fisiología , Asa de la Nefrona/anatomía & histología , Asa de la Nefrona/embriología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...