Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pain ; 165(8): 1774-1783, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38422490

RESUMEN

ABSTRACT: Neuropathic pain is a type of chronic pain that entails severe prolonged sensory dysfunctions caused by a lesion of the somatosensory system. Many of those suffering from the condition do not experience significant improvement with existing medications, resulting in various side effects. In this study, Sprague-Dawley male rats were used, and long-term deep brain stimulation of the ventrolateral periaqueductal gray was conducted in a rat model of spared nerve injury. We found that 5-Hz deep brain stimulation effectively modulated mechanical allodynia and induced neuronal activation in the rostral ventromedial medulla, restoring impaired descending serotonergic system. At the spinal level, glial cells were still activated but only the 5-HT1a receptor in the spinal cord was activated, implying its inhibitory role in mechanical allodynia. This study found that peripheral neuropathy caused dysfunction in the descending serotonergic system, and prolonged stimulation of ventrolateral periaqueductal gray can modulate the pathway in an efficient manner. This work would provide new opportunities for the development of targeted and effective treatments for this debilitating disease, possibly giving us lower chances of side effects from repeated high-frequency stimulation or long-term use of medication.


Asunto(s)
Neuralgia , Sustancia Gris Periacueductal , Ratas Sprague-Dawley , Animales , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/efectos de los fármacos , Masculino , Neuralgia/terapia , Neuralgia/metabolismo , Neuralgia/fisiopatología , Ratas , Estimulación Encefálica Profunda/métodos , Modelos Animales de Enfermedad , Hiperalgesia/fisiopatología , Hiperalgesia/metabolismo , Serotonina/metabolismo , Médula Espinal/metabolismo
2.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958901

RESUMEN

Activation of mammalian target of rapamycin (mTOR) has been known as one of the contributing factors in nociceptive sensitization after peripheral injury. Its activation followed by the phosphorylation of downstream effectors causes hyperexcitability of primary sensory neurons in the dorsal root ganglion. We investigated whether a single injection of rAAV-shmTOR would effectively downregulate both complexes of mTOR in the long-term and glial activation as well. Male SD rats were categorized into shmTOR (n = 29), shCON (n = 23), SNI (n = 13), and Normal (n = 8) groups. Treatment groups were injected with rAAV-shmTOR or rAAV-shCON, respectively. DRG tissues and sciatic nerve were harvested for Western blot and immunohistochemical analyses. Peripheral sensitization was gradually attenuated in the shmTOR group, and it reached a peak on PID 21. Western blot analysis showed that both p-mTORC1 and p-mTORC2 were downregulated in the DRG compared to shCON and SNI groups. We also found decreased expression of phosphorylated p38 and microglial activation in the DRG. We first attempted a therapeutic strategy for neuropathic pain with a low dose of AAV injection by interfering with the mTOR signaling pathway, suggesting its potential application in pain treatment.


Asunto(s)
Neuralgia , Traumatismos del Sistema Nervioso , Ratas , Masculino , Animales , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Neuralgia/etiología , Neuralgia/terapia , Neuralgia/metabolismo , Nervio Ciático/metabolismo , Traumatismos del Sistema Nervioso/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo , Ganglios Espinales/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...