Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 119(8): 1751-1762, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37041718

RESUMEN

AIMS: Chronic stress is a well-known risk factor for the development of hypertension. However, the underlying mechanisms remain unclear. Corticotropin-releasing hormone (CRH) neurons in the central nucleus of the amygdala (CeA) are involved in the autonomic responses to chronic stress. Here, we determined the role of CeA-CRH neurons in chronic stress-induced hypertension. METHODS AND RESULTS: Borderline hypertensive rats (BHRs) and Wistar-Kyoto (WKY) rats were subjected to chronic unpredictable stress (CUS). Firing activity and M-currents of CeA-CRH neurons were assessed, and a CRH-Cre-directed chemogenetic approach was used to suppress CeA-CRH neurons. CUS induced a sustained elevation of arterial blood pressure (ABP) and heart rate (HR) in BHRs, while in WKY rats, CUS-induced increases in ABP and HR quickly returned to baseline levels after CUS ended. CeA-CRH neurons displayed significantly higher firing activities in CUS-treated BHRs than unstressed BHRs. Selectively suppressing CeA-CRH neurons by chemogenetic approach attenuated CUS-induced hypertension and decreased elevated sympathetic outflow in CUS-treated BHRs. Also, CUS significantly decreased protein and mRNA levels of Kv7.2 and Kv7.3 channels in the CeA of BHRs. M-currents in CeA-CRH neurons were significantly decreased in CUS-treated BHRs compared with unstressed BHRs. Blocking Kv7 channel with its blocker XE-991 increased the excitability of CeA-CRH neurons in unstressed BHRs but not in CUS-treated BHRs. Microinjection of XE-991 into the CeA increased sympathetic outflow and ABP in unstressed BHRs but not in CUS-treated BHRs. CONCLUSIONS: CeA-CRH neurons are required for chronic stress-induced sustained hypertension. The hyperactivity of CeA-CRH neurons may be due to impaired Kv7 channel activity, which represents a new mechanism involved in chronic stress-induced hypertension.


Asunto(s)
Núcleo Amigdalino Central , Hipertensión , Ratas , Animales , Hormona Liberadora de Corticotropina/metabolismo , Núcleo Amigdalino Central/metabolismo , Ratas Endogámicas WKY , Hipertensión/metabolismo , Neuronas/metabolismo
2.
Cell Rep ; 42(2): 112105, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36807138

RESUMEN

Leukemic-stem-cell-specific targeting may improve the survival of patients with acute myeloid leukemia (AML) by avoiding the ablative effects of standard regimens on normal hematopoiesis. Herein, we perform an unbiased screening of compounds targeting cell surface proteins and identify clinically used DPP4 inhibitors as strong suppressors of AML development in both murine AML models and primary human AML cells xenograft model. We find in retrovirus-induced AML mouse models that DPP4-deficient AML cell-transplanted mice exhibit delay and reversal of AML development, whereas deletion of DPP4 has no significant effect on normal hematopoiesis. DPP4 activates and sustains survival of AML stem cells that are critical for AML development in both human and animal models via binding with Src kinase and activation of nuclear factor κB (NF-κB) signaling. Thus, inhibition of DPP4 is a potential therapeutic strategy against AML development through suppression of survival and stemness of AML cells.


Asunto(s)
Dipeptidil Peptidasa 4 , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Dipeptidil Peptidasa 4/metabolismo , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/metabolismo , Transducción de Señal , Células Madre/metabolismo
3.
J Neurochem ; 161(6): 478-491, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35583089

RESUMEN

Glutamate N-methyl-d-aspartate (NMDA) receptors (NMDARs) and Kv7/M channels are importantly involved in regulating neuronal activity involved in various physiological and pathological functions. Corticotropin-releasing hormone (CRH)-expressing neurons in the central nucleus of the amygdala (CeA) critically mediate autonomic response during stress. However, the interaction between NMDA receptors and Kv7/M channels in the CRHCeA neurons remains unclear. In this study, we identified rat CRHCeA neurons through the expression of an AAV viral vector-mediated enhanced green fluorescent protein (eGFP) driven by the rat CRH promoter. M-currents carried by Kv7/M channels were recorded using the whole-cell patch-clamp approach in eGFP-tagged CRHCeA neurons in brain slices. Acute exposure to NMDA significantly reduced M-currents recorded from the CRHCeA neurons. NMDA-induced suppression of M-currents was eliminated by chelating intracellular Ca2+ , supplying phosphatidylinositol 4,5-bisphosphate (PIP2) intracellularly, or blocking phosphoinositide3-kinase (PI3K). In contrast, inhibiting protein kinase C (PKC) or calmodulin did not alter NMDA-induced suppression of M-currents. Sustained exposure of NMDA decreased Kv7.3 membrane protein levels and suppressed M-currents, while the Kv7.2 expression levels remained unaltered. Pre-treatment of brain slices with PKC inhibitors alleviated the decreases in Kv7.3 and reduction of M-currents in CRHCeA neurons induced by NMDA. PKC inhibitors did not alter Kv7.2 and Kv7.3 membrane protein levels and M-currents in CRHCeA neurons. These data suggest that transient activation of NMDARs suppresses M-currents through the Ca2+ -dependent PI3K-PIP2 signaling pathway. In contrast, sustained activation of NMDARs reduces Kv7.3 protein expression and suppresses M-currents through a PKC-dependent pathway.


Asunto(s)
Núcleo Amigdalino Central , Hormona Liberadora de Corticotropina , Animales , Hormona Liberadora de Corticotropina/metabolismo , N-Metilaspartato/farmacología , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología
4.
Cardiovasc Res ; 118(2): 585-596, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33512443

RESUMEN

AIMS: Elevated sympathetic outflow is associated with primary hypertension. However, the mechanisms involved in heightened sympathetic outflow in hypertension are unclear. The central amygdala (CeA) regulates autonomic components of emotions through projections to the brainstem. The neuronal Kv7 channel is a non-inactivating voltage-dependent K+ channel encoded by KCNQ2/3 genes involved in stabilizing the neuronal membrane potential and regulating neuronal excitability. In this study, we investigated if altered Kv7 channel activity in the CeA contributes to heightened sympathetic outflow in hypertension. METHODS AND RESULTS: The mRNA and protein expression levels of Kv7.2/Kv7.3 in the CeA were significantly reduced in spontaneously hypertensive rats (SHRs) compared with Wistar-Kyoto (WKY) rats. Lowering blood pressure with coeliac ganglionectomy in SHRs did not alter Kv7.2 and Kv7.3 channel expression levels in the CeA. Fluospheres were injected into the rostral ventrolateral medulla (RVLM) to retrogradely label CeA neurons projecting to the RVLM (CeA-RVLM neurons). Kv7 channel currents recorded from CeA-RVLM neurons in brain slices were much smaller in SHRs than in WKY rats. Furthermore, the basal firing activity of CeA-RVLM neurons was significantly greater in SHRs than in WKY rats. Bath application of specific Kv7 channel blocker 10, 10-bis (4-pyridinylmethyl)-9(10H)-anthracnose (XE-991) increased the excitability of CeA-RVLM neurons in WKY rats, but not in SHRs. Microinjection of XE-991 into the CeA increased arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA), while microinjection of Kv7 channel opener QO-58 decreased ABP and RSNA, in anaesthetized WKY rats but not SHRs. CONCLUSIONS: Our findings suggest that diminished Kv7 channel activity in the CeA contributes to elevated sympathetic outflow in primary hypertension. This novel information provides new mechanistic insight into the pathogenesis of neurogenic hypertension.


Asunto(s)
Presión Arterial , Núcleo Amigdalino Central/metabolismo , Hipertensión/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Bulbo Raquídeo/metabolismo , Potasio/metabolismo , Sistema Nervioso Simpático/fisiopatología , Animales , Núcleo Amigdalino Central/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/genética , Hipertensión/fisiopatología , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Bulbo Raquídeo/fisiopatología , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína Fluorescente Roja
5.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34789577

RESUMEN

Recognition of invading pathogens by Toll-like receptors (TLRs) activates innate immunity through signaling pathways that involved multiple protein kinases and phosphatases. We previously demonstrated that somatic nuclear autoantigenic sperm protein (sNASP) binds to TNF receptor-associated factor 6 (TRAF6) in the resting state. Upon TLR4 activation, a signaling complex consisting of TRAF6, sNASP, interleukin (IL)-1 receptor-associated kinase 4, and casein kinase 2 (CK2) is formed. CK2 then phosphorylates sNASP to release phospho-sNASP (p-sNASP) from TRAF6, initiating downstream signaling pathways. Here, we showed that protein phosphatase 4 (PP4) is the specific sNASP phosphatase that negatively regulates TLR4-induced TRAF6 activation and its downstream signaling pathway. Mechanistically, PP4 is directly recruited by phosphorylated sNASP to dephosphorylate p-sNASP to terminate TRAF6 activation. Ectopic expression of PP4 specifically inhibited sNASP-dependent proinflammatory cytokine production and downstream signaling following bacterial lipopolysaccharide (LPS) treatment, whereas silencing PP4 had the opposite effect. Primary macrophages and mice infected with recombinant adenovirus carrying a gene encoding PP4 (Ad-PP4) showed significant reduction in IL-6 and TNF-α production. Survival of Ad-PP4-infected mice was markedly increased due to a better ability to clear bacteria in a sepsis model. These results indicate that the serine/threonine phosphatase PP4 functions as a negative regulator of innate immunity by regulating the binding of sNASP to TRAF6.


Asunto(s)
Autoantígenos/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Autoantígenos/genética , Quinasa de la Caseína II/genética , Proteínas de Ciclo Celular/genética , Quimiocinas/metabolismo , Citocinas , Inmunidad Innata , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas Fosfatasas/genética , Fosforilación , Transducción de Señal/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/genética , Receptor Toll-Like 4/genética , Receptores Toll-Like/metabolismo
6.
Physiol Rev ; 100(4): 1599-1619, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32666886

RESUMEN

Sentrin/small ubiquitin-like modifier (SUMO) is protein modification pathway that regulates multiple biological processes, including cell division, DNA replication/repair, signal transduction, and cellular metabolism. In this review, we will focus on recent advances in the mechanisms of disease pathogenesis, such as cancer, diabetes, seizure, and heart failure, which have been linked to the SUMO pathway. SUMO is conjugated to lysine residues in target proteins through an isopeptide linkage catalyzed by SUMO-specific activating (E1), conjugating (E2), and ligating (E3) enzymes. In steady state, the quantity of SUMO-modified substrates is usually a small fraction of unmodified substrates due to the deconjugation activity of the family Sentrin/SUMO-specific proteases (SENPs). In contrast to the complexity of the ubiquitination/deubiquitination machinery, the biochemistry of SUMOylation and de-SUMOylation is relatively modest. Specificity of the SUMO pathway is achieved through redox regulation, acetylation, phosphorylation, or other posttranslational protein modification of the SUMOylation and de-SUMOylation enzymes. There are three major SUMOs. SUMO-1 usually modifies a substrate as a monomer; however, SUMO-2/3 can form poly-SUMO chains. The monomeric SUMO-1 or poly-SUMO chains can interact with other proteins through SUMO-interactive motif (SIM). Thus SUMO modification provides a platform to enhance protein-protein interaction. The consequence of SUMOylation includes changes in cellular localization, protein activity, or protein stability. Furthermore, SUMO may join force with ubiquitin to degrade proteins through SUMO-targeted ubiquitin ligases (STUbL). After 20 yr of research, SUMO has been shown to play critical roles in most, if not all, biological pathways. Thus the SUMO enzymes could be targets for drug development to treat human diseases.


Asunto(s)
Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Inmunidad Adaptativa/fisiología , Animales , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
7.
Cardiooncology ; 6: 1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32154027

RESUMEN

BACKGROUND: Continuous infusion of doxorubicin or dexrazoxane pre-treatment prior to bolus doxorubicin are proven strategies to protect against doxorubicin-induced cardiotoxicity. Recently, global longitudinal peak systolic strain (GLS) measured with speckle tracking echocardiography (STE) and high-sensitivity troponin T (hs-TnT) have been validated as sensitive indicators of doxorubicin-induced cardiotoxicity. Here, we asked whether changes in hs-TnT and/or GLS can be detected in patients who were treated with continuous infusion of doxorubicin or pre-treated with dexrazoxane followed by bolus doxorubicin. METHODS: Twenty-nine patients with newly diagnosed sarcoma were assigned to receive either 72-h doxorubicin infusion or dexrazoxane pre-treatment before bolus doxorubicin. Eight patients received dexrazoxane pre-treatment; eleven patients received continuous doxorubicin infusion; ten patients crossed over from continuous infusion to dexrazoxane. Bloods were collected for hs-TnT at baseline, 24 h or 72 h after initiation of doxorubicin treatment in each chemotherapy cycle. All blood samples were assayed in batch using hs-TnT kit from Roche diagnostics. 2D Echo and STE were performed before doxorubicin, after cycle 3, and at the end of chemotherapy. RESULTS: Seven patients in the cross-over group have at least one hs-TnT measurement between 5 ng/L to 10 ng/L during and after chemotherapy. Ten patients have at least one hs-TnT measurement above 10 ng/ml during and after chemotherapy (six in dexrazoxane group, three in continuous infusion group, one in cross-over group). The average hs-TnT level increases with each additional cycle of doxorubicin treatment. Eight patients had a more than 5% reduction in LVEF at the end of chemotherapy (four in dexrazoxane group, three in continuous infusion group, and one in cross-over group). Four out of these eight patients had a change of GLS by more than 15% (three in the dexrazoxane group). CONCLUSION: Elevation in hs-TnT levels were observed in more than 59% of patients who had received either continuous doxorubicin infusion or dexrazoxane pre-treatment before bolus doxorubicin. However, changes in LVEF and GLS were less frequently observed. Thus, continuous doxorubicin infusion or dexrazoxane pre-treatment do not completely ameliorate subclinical doxorubicin-induced cardiotoxicity as detected by more sensitive techniques.

8.
Semin Oncol ; 46(6): 397-402, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31753424

RESUMEN

The opening session of Second International Colloquium on Cardio-Oncology addressed two areas of vital interest. The first reviewed new thoughts related to established agents. While anthracycline cardiotoxicity has been studied and reviewed extensively, ongoing research attempting to understand why it appears the mechanism(s) of toxicity differs from that of oncologic efficacy continue to evoke comment and intriguing speculation. Better understanding of the role of ß-topoisomerase II in toxicity has advanced our understanding of the cascade of events that lead to heart failure. Additionally, the cardioprotective role of dexrazoxane fits well with our new understanding of how ß-topoisomerase II works. Beyond the anthracyclines, new insight is providing us insight to better understand the impact on cardiac function seen with other agents including those targeting HER2 and several tyrosine-kinase inhibitors. Unlike the anthracyclines, these agents affect cardiac function in ways that are less direct, and therefore have different characteristics and should be thought of in alternate ways. This new knowledge regarding established agents furthers our understanding of the spectrum of cardiotoxicity and cardiac dysfunction in the cancer patient. The session also addressed cardiovascular toxicities of newer and established agents beyond myocardial dysfunction including effects on the vasculature. These agents cause changes that may be temporary or permanent, and that range from subclinical to life-threatening. The session ended with a discussion of the cardiac effects of immune checkpoint inhibitors. These agents can cause rare and sometimes fatal cardiac inflammation, for which long-term follow up may be required.


Asunto(s)
Antineoplásicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Enfermedades Cardiovasculares/etiología , Neoplasias/complicaciones , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cardiotoxicidad , Enfermedades Cardiovasculares/diagnóstico , ADN-Topoisomerasas de Tipo II , Humanos , Oncología Médica , Terapia Molecular Dirigida/efectos adversos , Terapia Molecular Dirigida/métodos , Neoplasias/terapia , Proteínas de Unión a Poli-ADP-Ribosa
9.
J Clin Invest ; 128(6): 2459-2472, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29733298

RESUMEN

Many Toll-like receptors (TLRs) signal through TNF receptor-associated factor 6 (TRAF6) to activate innate immune responses. Here, we show that somatic nuclear autoantigenic sperm protein (sNASP) binds to TRAF6 to prevent TRAF6 autoubiquitination in unstimulated macrophages. Following LPS stimulation, a complex consisting of sNASP, TRAF6, IRAK4, and casein kinase 2 (CK2) is formed. CK2 phosphorylates sNASP at serine 158, allowing sNASP to dissociate from TRAF6. Free TRAF6 is then autoubiquitinated, followed by activation of downstream signaling pathways. In sNasp S158A knockin (S158A-KI) mice, LPS-treated macrophages could not phosphorylate sNASP, which remained bound to TRAF6. S158A-KI mice were more susceptible to sepsis due to a marked reduction in IL-1ß, TNF-α, and IFN-γ production accompanied by an inability to clear bacteria and recruit leukocytes. Furthermore, phosphorylation-regulated release of sNASP from TRAF6 is observed following activation of TLR-1, -2, -4, -5, and -6. Thus, sNASP is a negative regulator of TLR signaling to modulate the innate immune response.


Asunto(s)
Inmunidad Innata , Macrófagos/inmunología , Sepsis/inmunología , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología , Animales , Autoantígenos/genética , Autoantígenos/inmunología , Proteínas de Ciclo Celular , Citocinas/genética , Citocinas/inmunología , Células HEK293 , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Péptidos y Proteínas de Señalización Intracelular , Macrófagos/patología , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Células RAW 264.7 , Sepsis/genética , Sepsis/patología , Transducción de Señal/genética , Células THP-1 , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/inmunología , Receptores Toll-Like/genética
10.
Clin Respir J ; 12(2): 772-778, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27925446

RESUMEN

INTRODUCTION: Approximately 50% of patients with sepsis-induced acute lung injury and acute respiratory distress syndrome require mechanical ventilation. Patients with extended mechanical ventilator use routinely develop reinfections, which increases hospital stay, mortality, and health care cost. Some studies have pointed out inflammatory factors concentrations can affect ventilator weaning, but do not indicate changed inflammatory factors related to ventilator weaning during using ventilators. OBJECTIVES: This study aimed to investigate during period of septic patients using ventilators, the inflammatory cytokines concentrations related with weaning rate. METHODS: Blood was collected from 35 septic patients before and during ventilator use on days 1, 7, 14, and 21 (or weaning). RESULTS: 58.3% (N = 20) of septic patients with mechanical ventilators were weaned successfully within 21 days (ventilator weaned group, VW), 16.7% (N = 6) did not wean within 21 days (ventilator dependent group, VD), and 25% died (death group) in hospital. Before ventilator use, higher C-reactive protein (CRP), IL-6, and IL-8 levels were measured in the death group than in all other groups (P < .05). During ventilator use, CRP, IL-6, and IL-8 concentrations declined significantly in VW and VD patients (P < .05). In addition, IL-6 concentrations in the VW group were significantly lower than in the VD group at 14 and 21 days (P < .05). CONCLUSION: The factors of ventilators weaning successfully such as disease control, nutritional status, and so on. The declined levels of serum inflammatory cytokines, especially IL-6, improved inflammation status might be one factor of successfully weaning during septic patients on ventilators.


Asunto(s)
Citocinas/sangre , Mortalidad Hospitalaria , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Sepsis/complicaciones , Desconexión del Ventilador/estadística & datos numéricos , Adulto , Anciano , Estudios de Cohortes , Citocinas/análisis , Servicio de Urgencia en Hospital , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Mediadores de Inflamación/sangre , Tiempo de Internación , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/métodos , Pronóstico , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/mortalidad , Medición de Riesgo , Sepsis/diagnóstico , Sepsis/mortalidad , Sepsis/terapia , Tasa de Supervivencia
11.
J Am Coll Cardiol ; 70(20): 2536-2551, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29145954

RESUMEN

Modern cancer therapy has successfully cured many cancers and converted a terminal illness into a chronic disease. Because cancer patients often have coexisting heart diseases, expert advice from cardiologists will improve clinical outcome. In addition, cancer therapy can also cause myocardial damage, induce endothelial dysfunction, and alter cardiac conduction. Thus, it is important for practicing cardiologists to be knowledgeable about the diagnosis, prevention, and management of the cardiovascular complications of cancer therapy. In this first part of a 2-part review, we will review cancer therapy-induced cardiomyopathy and ischemia. This review is based on a MEDLINE search of published data, published clinical guidelines, and best practices in major cancer centers. With the number of cancer survivors expanding quickly, the time has come for cardiologists to work closely with cancer specialists to prevent and treat cancer therapy-induced cardiovascular complications.


Asunto(s)
Antineoplásicos/efectos adversos , Enfermedades Cardiovasculares , Manejo de la Enfermedad , Neoplasias/tratamiento farmacológico , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/prevención & control , Salud Global , Humanos , Incidencia , Factores de Riesgo
12.
J Am Coll Cardiol ; 70(20): 2552-2565, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29145955

RESUMEN

In this second part of a 2-part review, we will review cancer or cancer therapy-associated systemic and pulmonary hypertension, QT prolongation, arrhythmias, pericardial disease, and radiation-induced cardiotoxicity. This review is based on a MEDLINE search of published data, published clinical guidelines, and best practices in major cancer centers. Newly developed targeted therapy can exert off-target effects causing hypertension, thromboembolism, QT prolongation, and atrial fibrillation. Radiation therapy often accelerates atherosclerosis. Furthermore, radiation can damage the heart valves, the conduction system, and pericardium, which may take years to manifest clinically. Management of pericardial disease in cancer patients also posed clinical challenges. This review highlights the unique opportunity of caring for cancer patients with heart problems caused by cancer or cancer therapy. It is an invitation to action for cardiologists to become familiar with this emerging subspecialty.


Asunto(s)
Enfermedades Cardiovasculares , Manejo de la Enfermedad , Neoplasias/terapia , Cardiotoxicidad , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Terapia Combinada/efectos adversos , Salud Global , Humanos , Morbilidad/tendencias
13.
J Am Coll Cardiol ; 70(8): 939-941, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28818203
14.
JAMA Cardiol ; 2(7): 818, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28273313
15.
JAMA Cardiol ; 1(9): 1066-1072, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27541948

RESUMEN

IMPORTANCE: Oncocardiology is a medical discipline that focuses on the identification, prevention, and treatment of cardiovascular complications related to cancer therapy. This discipline has gained interest from the cardiology community in recent years because of a remarkable increase in the number of cancer survivors and the proliferation of new cancer therapies causing cardiovascular complications, such as hypertension, heart failure, vascular complications, and cardiac arrhythmia. In this review, we provide historical perspectives, highlight new discoveries, and speculate on the opportunity created by merging the research interests and clinical practices of cardiology and oncology. OBSERVATIONS: The old paradigm of anthracycline cardiotoxic effects is replaced by new insights that anthracycline targets topoisomerase II ß to cause DNA double-strand breaks and a profound change in the transcriptome leading to the generation of reactive oxygen species and the development of mitochondriopathy. Prevention of anthracycline cardiotoxic effects should be based on inhibiting or degrading topoisomerase II ß. New challenges were posed by the introduction of trastuzumab and tyrosine kinase inhibitors that revolutionized cancer therapy. The on-target cardiotoxic effects of trastuzumab were owing to a prosurvival benefit of Her2 that binds to neuregulin, whereas the off-target effect of multitargeted tyrosine kinase inhibitors may be mediated by disruption of the vascular endothelial growth factor signaling pathway or the stress-induced angiogenesis. Sensitive imaging techniques, such as global strain, and biomarkers have allowed for early detection of cardiotoxic effects. Early treatment with heart failure medications may be beneficial in preventing the development of late cardiotoxic effects. CONCLUSIONS AND RELEVANCE: Close collaboration between cardiologists and oncologists is required to meet the demand of an increasing number of cancer survivors. New insights based on mechanistic studies or genetic discoveries will pave the way for better prevention, diagnosis, and treatment of cancer therapy-induced cardiovascular complications.

16.
Free Radic Biol Med ; 38(7): 950-9, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15749391

RESUMEN

Bleomycin (BLM) is an anticancer drug that generates reactive oxygen species (ROS) after interacting with iron and oxygen. We hypothesized that BLM could cause a different status of oxidative stress in normal versus tumor cells due to possible altered redox status and gene expression in cells following transformation. In this study, the extent of cytotoxicity, levels of ROS, and activities of antioxidant enzymes were compared between normal WI38 cells and SV40-transformed WI38 (VA13) cells following BLM treatment. Basal activities of MnSOD and catalase were lower in VA13 cells and basal ROS levels were higher in VA13 cells. Although BLM caused greater growth inhibition and apoptosis in VA13 cells, it increased ROS levels at an earlier time point in WI38 cells. Moreover, BLM treatment (100 microg/ml) had no effect on the activities of MnSOD, CuZnSOD, and catalase, but increased the activities of glutathione peroxidase (GPX) in WI38 cells after a 48-h treatment and in VA13 cells after a 24- and 48-h treatment. Northern blot analysis indicated that the increase in GPX activities was due to increased transcript levels of GPX1 but not GPX4 in both cells. Our results indicate selective induction of the GPX1 gene by BLM and different redox responses to BLM between WI38 and VA13 cells.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/metabolismo , Bleomicina/farmacología , Glutatión Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Línea Celular , Línea Celular Transformada , Glutatión Peroxidasa/genética , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Superóxido Dismutasa/genética , Glutatión Peroxidasa GPX1
18.
Pain Med ; 3(3): 194-5, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15099251
19.
Blood ; 83(12): 3753-7, 1994 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-8204896

RESUMEN

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematologic disorder that affects both sexes equally. The biochemical defect in PNH resides in the incomplete enzymatic assembly of glycosylphosphatidylinositol (GPI) anchors used for surface protein attachment. In all PNH patients tested to date, the biosynthetic defect occurs at the addition of N-acetyl-glucosamine to the phosphatidylinositol molecule (class A defect). A human cDNA, Piga, that repairs cell lines with the class A GPI-anchor biosynthetic defect has been recently cloned. Mapping of Piga to the X chromosome suggests that a single acquired mutation within Piga could alter GPI-anchor synthesis and result in PNH. However, this finding does not explain why all PNH patients have the class A defect. In the current study, the chromosomal assignment of Piga, as well as of Pigf and Pigh, two additional genes involved in GPI-anchor biosynthesis, has been established using a mouse interspecific backcross mapping technique. In contrast to Piga, both human and mouse Pigf and Pigh genes map to autosomes. The location of Pigf and Pigh suggests that mutations on both alleles of these autosomal genes would be necessary to produce PNH. This helps to explain the predominant class A defect in PNH.


Asunto(s)
Mapeo Cromosómico , Glicosilfosfatidilinositoles/biosíntesis , Hemoglobinuria Paroxística/etiología , Animales , Secuencia de Bases , Intercambio Genético , Humanos , Meiosis , Ratones , Ratones Endogámicos C3H , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...