RESUMEN
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is implicated in various processes, including hormone-induced signal transduction, endocytosis, and exocytosis in the plasma membrane. However, how H2O2 accumulation regulates the levels of PtdIns(4,5)P2 in the plasma membrane in cells stimulated with epidermal growth factors (EGFs) is not known. We show that a plasma membrane PtdIns(4,5)P2-degrading enzyme, synaptojanin (Synj) phosphatase, is inactivated through oxidation by H2O2. Intriguingly, H2O2 inhibits the 4-phosphatase activity of Synj but not the 5-phosphatase activity. In EGF-activated cells, the oxidation of Synj dual phosphatase is required for the transient increase in the plasma membrane levels of phosphatidylinositol 4-phosphate [PtdIns(4)P], which can control EGF receptor-mediated endocytosis. These results indicate that intracellular H2O2 molecules act as signaling mediators to fine-tune endocytosis by controlling the stability of plasma membrane PtdIns(4)P, an intermediate product of Synj phosphoinositide dual phosphatase.
Asunto(s)
Peróxido de Hidrógeno , Proteínas del Tejido Nervioso , Fosfatidilinositoles , Peróxido de Hidrógeno/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Membrana Celular/metabolismo , Transducción de Señal , EndocitosisRESUMEN
Macroscopic assembly offers immense potential for constructing complex systems due to the high design flexibility of the building blocks. In such assembly systems, hydrogels are promising candidates for building blocks due to their versatile chemical compositions and ease of property tuning. However, two major challenges must be addressed to facilitate application in a broader context: the precision of assembly and the quantity of orthogonally matching pairs must both be increased. Although previous studies have attempted to address these challenges, none have successfully dealt with both simultaneously. Here, we propose topology-based design criteria for the selective assembly of hydrogel building blocks. By introducing the dual lock-and-key structures, we demonstrate highly precise assembly exclusively between the matching pairs. We establish principles for selecting multiple orthogonally matching pairs and achieve selective assembly involving simple one-to-one matching and complex assemblies with multiple orthogonal matching points. Moreover, by harnessing hydrogel tunability and the abundance of matching pairs, we synthesize complementary single-stranded structures for programmable assembly and successfully assemble them in the correct order. Finally, we demonstrate a hydrogel-based self-assembled logic gate system, including a YES gate, an OR gate, and an AND gate. The output is generated only when the corresponding inputs are provided according to each logic.
RESUMEN
Biological systems are composed of hierarchical structures made of a large number of proteins. These structures are highly sophisticated and challenging to replicate using artificial synthesis methods. To exploit these structures in materials science, biotemplating is used to achieve biocomposites that accurately mimic biological structures and impart functionality of inorganic materials, including electrical conductivity. However, the biological scaffolds used in previous studies are limited to stereotypical and simple morphologies with little synthetic diversity because of a lack of control over their morphologies. This study proposes that the specific protein assemblies within the cell-derived extracellular matrix (ECM), whose morphological features are widely tailorable, can be employed as versatile biotemplates. In a typical procedure, a fibrillar assembly of fibronectin-a constituent protein of the ECM-is metalized through an antibody-guided biotemplating approach. Specifically, the antibody-bearing nanogold is attached to the fibronectin through antibody-antigen interactions, and then metals are grown on the nanogold acting as a seed. The biomimetic structure can be adapted for hydrogen production and sensing after improving its electrical conductivity through thermal sintering or additional metal growth. This study demonstrates that cell-derived ECM can be an attractive option for addressing the diversity limitation of a conventional biotemplate.
Asunto(s)
Matriz Extracelular , Fibronectinas , Fibronectinas/metabolismo , Matriz Extracelular/metabolismo , Anticuerpos/metabolismo , BiomiméticaRESUMEN
Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson-Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene.
Asunto(s)
Microscopía , Redes Neurales de la Computación , Relación Señal-Ruido , Distribución Normal , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Hydrogels have been utilized extensively as a material for retaining position information in tissue imaging procedures, such as tissue clearing and super-resolution imaging. Immunostaining thick biological tissues, however, poses a bottleneck that restricts sample size. The recently developed technique known as entangled link-augmented stretchable tissue-hydrogel (ELAST) accelerates the immunostaining process by embedding specimens in long-chain polymers and stretching them. A more advanced version of ELAST, magnifiable entangled link-augmented stretchable tissue-hydrogel (mELAST), achieves rapid immunostaining and tissue expansion by embedding specimens in long-chain neutral polymers and subsequently hydrolyzing them. Building on these techniques, we introduce a variant of mELAST called ExELAST. This approach uses charged monomers to stretch and expand tissue slices. Using ExELAST, we first tested two hydrogel compositions that could permit uniform expansion of biological specimens. Then, we apply the tailored hydrogel to the 500-µm-thick mouse brain slices and demonstrated that they can be stained within two days and imaged with a resolution below the diffraction limit of light.
Asunto(s)
Diagnóstico por Imagen , Hidrogeles , Animales , Ratones , Polímeros , Tamaño de la Muestra , Expansión de TejidoRESUMEN
In biological studies and diagnoses, brightfield (BF), fluorescence, and electron microscopy (EM) are used to image biomolecules inside cells. When compared, their relative advantages and disadvantages are obvious. BF microscopy is the most accessible of the three, but its resolution is limited to a few microns. EM provides a nanoscale resolution, but sample preparation is time-consuming. In this study, we present a new imaging technique, which we termed decoration microscopy (DecoM), and quantitative investigations to address the aforementioned issues in EM and BF microscopy. For molecular-specific EM imaging, DecoM labels proteins inside cells using antibodies bearing 1.4 nm gold nanoparticles (AuNPs) and grows silver layers on the AuNPs' surfaces. The cells are then dried without buffer exchange and imaged using scanning electron microscopy (SEM). Structures labeled with silver-grown AuNPs are clearly visible on SEM, even they are covered with lipid membranes. Using stochastic optical reconstruction microscopy, we show that the drying process causes negligible distortion of structures and that less structural deformation could be achieved through simple buffer exchange to hexamethyldisilazane. Using DecoM, we visualize the nanoscale alterations in microtubules by microtubule-severing proteins that cannot be observed with diffraction-limited fluorescence microscopy. We then combine DecoM with expansion microscopy to enable sub-micron resolution BF microscopy imaging. We first show that silver-grown AuNPs strongly absorb white light, and the structures labeled with them are clearly visible on BF microscopy. We then show that the application of AuNPs and silver development must follow expansion to visualize the labeled proteins clearly with sub-micron resolution.
RESUMEN
Human hands are highly versatile. Even though they are primarily made of materials with high water content, they exhibit a high load capacity. However, existing hydrogel grippers do not possess a high load capacity due to their innate softness and mechanical strength. This work demonstrates a human hand-inspired all-hydrogel gripper that can bear more than 47.6 times its own weight. This gripper is made of two hydrogels: poly(methacrylamide-co-methacrylic acid) (P(MAAm-co-MAAc)) and poly(N-isopropylacrylamide) (PNIPAM). P(MAAm-co-MAAc) is extremely stiff but becomes soft above its transition temperature. By taking advantage of the difference in the kinetics of the stiff-soft transition of P(MAAm-co-MAAc) hydrogels and the swelling-shrinking transition of PNIPAM hydrogels, this gripper can be switched between its stiff-bent and stiff-stretched states by simply changing the temperature. The assembly of these two hydrogels into a gripper necessitated the development of a new hydrogel adhesion method, as existing topological adhesion methods are not applicable to such stiff hydrogels. A new hydrogel adhesion method, termed split-brushing adhesion, has been demonstrated to satisfy this need. When applied to P(MAAm-co-MAAc) hydrogels, this method achieves an adhesion energy of 1221.6 J m-2, which is 67.5 times higher than that achieved with other topological adhesion methods.
RESUMEN
Cell-generated mechanical forces drive many cellular and tissue-level movements and rearrangements required for the tissue or organ to develop its shape1, 2, 3, 4, 5. The prevalent view of tissue morphogenesis relies on epithelial folding resulting in compressed epithelial monolayers, overlooking the involvement of stroma in morphogenesis1, 4, 6, 7. Here, we report a giant web-like network formation of stromal cells in the epithelium-stroma interface, resulting from a multi-scale mechano-reciprocity between migrating cells and their extracellular environment. In multi-layered tissues, surface wrinkles form by a stromal cell-mediated tensional force exerted at the basement membrane. The topographical cue is transmitted to the stromal cell, directing its protrusion and migration along the wrinkles. This inductive movement of the cells conveys traction forces to its surrounding extracellular matrix, remodeling the local architectures of the stroma. In this manner, stromal cells and wrinkles communicate recursively to generate the cellular network. Our observation provides a rational mechanism for network formation in living tissues and a new understanding of the role of cellular-level tensional force in morphogenesis.
RESUMEN
Collagen is a prominent target of nonenzymatic glycation, which is a hallmark of aging and causes functional alteration of the matrix. Here, we uncover glycation-mediated structural and functional changes in the collagen-enriched meningeal membrane of the human and mouse brain. Using an in vitro culture platform mimicking the meningeal membrane composed of fibrillar collagen, we showed that the accumulation of advanced glycation end products (AGEs) in the collagen membrane is responsible for glycation-mediated matrix remodeling. These changes influence fibroblast-matrix interactions, inducing cell-mediated ECM remodeling. The adherence of meningeal fibroblasts to the glycated collagen membrane was mediated by the discoidin domain-containing receptor 2 (DDR2), whereas integrin-mediated adhesion was inhibited. A-kinase anchoring protein 12 (AKAP12)-positive meningeal fibroblasts in the meningeal membrane of aged mice exhibited substantially increased expression of DDR2 and depletion of integrin beta-1 (ITGB1). In the glycated collagen membrane, meningeal fibroblasts increased the expression of matrix metalloproteinase 14 (MMP14) and less tissue inhibitor of metalloproteinase-1 (TIMP1). In contrast, the cells exhibited decreased expression of type I collagen (COL1A1). These results suggest that glycation modification by meningeal fibroblasts is intimately linked to aging-related structural and functional alterations in the meningeal membrane.
Asunto(s)
Reacción de Maillard , Inhibidor Tisular de Metaloproteinasa-1 , Ratones , Humanos , Animales , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Colágeno/metabolismo , Integrinas/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Encéfalo/metabolismo , Fibroblastos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismoRESUMEN
Achieving strong adhesion between hydrogels and diverse materials is greatly significant for emerging technologies yet remains challenging. Existing methods using non-covalent bonds have limited pH and ion stability, while those using covalent bonds typically lack on-demand detachment capability, limiting their applications. In this study, a general strategy of covalent bond-based and detachable adhesion by incorporating amine-rich proteins in various hydrogels and inducing the interfacial crosslinking of the hydrogels using a protein-crosslinking agent is demonstrated. The protein crosslink offers topological adhesion and can reach a strong adhesion energy of ≈750 J m-2 . The chemistry of the adhesion is characterized and that the inclusion of proteins inside the hydrogels does not alter the hydrogels' properties is shown. The adhesion remains intact after treating the adhered hydrogels with various pH solutions and ions, even at an elevated temperature. The detachment is triggered by treating proteinase solution at the bonding front, causing the digestion of proteins, thus breaking up the interfacial crosslink network. In addition, that this approach can be used to adhere hydrogels to diverse dry surfaces, including glass, elastomers and plastics, is shown. The stable chemistry of protein crosslinks opens the door for various applications in a wide range of chemical environments.
Asunto(s)
Hidrogeles , Plásticos , Hidrogeles/química , Elastómeros , AminasRESUMEN
Photochemical instability and reactivity of organic ultraviolet (UV) filters not only degrade the performance of sunscreen formulations but also generate toxic photodegradation products and reactive oxygen species (ROS). Although the encapsulation of organic UV filters into synthetic polymer particles has been widely investigated, synthetic plastics were recently banned for personal care and cosmetic products due to marine and coastal pollution issues. Here we present a plastic-free, photochemically stable and inactive UV filter platform based on chitosan-coated mesoporous silica microparticles, denoted 'mSOCPs', incorporating octyl methoxycinnamate (OMC) as a sunscreen agent. Sunlight induced the degradation of â¼80% free OMC in artificial sweat in 1 h at room temperature, while only 20% of OMC degraded for 3 h when encapsulated within mSOCPs. Moreover, mSOCPs efficiently suppressed the photochemical generation of ROS by about 99% through the combined effects of the mesoporous silica structure and chitosan coating. Accordingly, mSOCPs substantially increased the cell viability of fibroblasts exposed to UV irradiation. This work demonstrates that the biopolymer coatings of mesoporous inorganic particles can be a promising approach to the plastic-free encapsulation of organic UV filters for suppressing their photochemical reactivity and degradation.
Asunto(s)
Quitosano , Protectores Solares , Estabilidad de Medicamentos , Especies Reactivas de Oxígeno , Dióxido de Silicio/química , Protectores Solares/química , Protectores Solares/farmacología , Rayos UltravioletaRESUMEN
Biological systems consist of hierarchical protein structures, each of which has unique 3D geometries optimized for specific functions. In the past decades, the growth of inorganic materials on specific proteins has attracted considerable attention. However, the use of specific proteins as templates has only been demonstrated in relatively simple organisms, such as viruses, limiting the range of structures that can be used as scaffolds. This study proposes a method for synthesizing metallic structures that resemble the 3D assemblies of specific proteins in mammalian cells and animal tissues. Using 1.4 nm nanogold-conjugated antibodies, specific proteins within cells and ex vivo tissues are labeled, and then the nanogold acts as nucleation sites for growth of metal particles. As proof of concept, various metal particles are grown using microtubules in cells as templates. The metal-containing cells are applied as catalysts and show catalytic stability in liquid-phase reactions due to the rigid support provided by the microtubules. Finally, this method is used to produce metal structures that replicate the specific protein assemblies of neurons in the mouse brain or the extracellular matrices in the mouse kidney and heart. This new biotemplating approach can facilitate the conversion of specific protein structures into metallic forms in ex vivo multicellular organisms.
Asunto(s)
Mamíferos , Metales , Animales , Catálisis , Metales/química , RatonesRESUMEN
Amplification of immunofluorescence (IF) signals is becoming increasingly critical in cancer research and neuroscience. Recently, we put forward a new signal amplification technique, which we termed fluorescent signal amplification via cyclic staining of target molecules (FRACTAL). FRACTAL amplifies IF signals by repeatedly labeling target proteins with a pair of secondary antibodies that bind to each other. However, simultaneous amplification of multiple IF signals via FRACTAL has not yet been demonstrated because of cross-reactivity between the secondary antibodies. In this study, we show that mutual cross-adsorption between antibodies can eliminate all forms of cross-reactions between them, enabling simultaneous amplification of multiple IF signals. First, we show that a typical cross-adsorption process-in which an antibody binds to proteins with potential cross-reactivity with the antibody-cannot eliminate cross-reactions between antibodies in FRACTAL. Next, we show that all secondary antibodies used in FRACTAL need to be mutually cross-adsorbed to eliminate all forms of cross-reactivity, and then we demonstrate simultaneous amplification of multiple IF signals using these antibodies. Finally, we show that multiplexed FRACTAL can be applied to expansion microscopy to achieve higher fluorescence intensities after expansion. Multiplexed FRACTAL is a highly versatile tool for standard laboratories, as it amplifies multiple IF signals without the need for custom antibodies.
Asunto(s)
Anticuerpos , Colorantes , Técnica del Anticuerpo Fluorescente , Proteínas , Coloración y EtiquetadoRESUMEN
Curved hydrogel surfaces bearing chemical patterns are highly desirable in various applications, including artificial blood vessels, wearable electronics, and soft robotics. However, previous studies on the fabrication of chemical patterns on hydrogels employed two-photon lithography, which is still not widely accessible to most laboratories. This work demonstrates a new patterning technique for fabricating curved hydrogels with chemical patterns on their surfaces without two-photon microscopy. In this work, we show that exposing hydrogels in fluorophore solutions to single photons via confocal microscopy enables the patterning of fluorophores on hydrogels. By applying this technique to highly stretchable hydrogels, we demonstrate three applications: (1) improving pattern resolution by fabricating patterns on stretched hydrogels and then returning the hydrogels to their initial, unstretched length; (2) modifying the local stretchability of hydrogels at a microscale resolution; and (3) fabricating perfusable microchannels with chemical patterns by winding chemically patterned hydrogels around a template, embedding the hydrogels in a second hydrogel, and then removing the template. The patterning method demonstrated in this work may facilitate a better mimicking of the physicochemical properties of organs in tissue engineering and may be used to make hydrogel robots with specific chemical functionalities.
Asunto(s)
Hidrogeles , Fotones , Electrónica , Hidrogeles/química , Ingeniería de TejidosRESUMEN
Ultra-multiplexed fluorescence imaging requires the use of spectrally overlapping fluorophores to label proteins and then to unmix the images of the fluorophores. However, doing this remains a challenge, especially in highly heterogeneous specimens, such as the brain, owing to the high degree of variation in the emission spectra of fluorophores in such specimens. Here, we propose PICASSO, which enables more than 15-color imaging of spatially overlapping proteins in a single imaging round without using any reference emission spectra. PICASSO requires an equal number of images and fluorophores, which enables such advanced multiplexed imaging, even with bandpass filter-based microscopy. We show that PICASSO can be used to achieve strong multiplexing capability in diverse applications. By combining PICASSO with cyclic immunofluorescence staining, we achieve 45-color imaging of the mouse brain in three cycles. PICASSO provides a tool for multiplexed imaging with high accessibility and accuracy for a broad range of researchers.
Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Animales , Ratones , Microscopía Fluorescente/métodos , Proteínas , Coloración y EtiquetadoRESUMEN
Simultaneous nanoscale imaging of mRNAs and proteins of the same specimen can provide better information on the translational regulation, molecular trafficking, and molecular interaction of both normal and diseased biological systems. Expansion microscopy (ExM) is an attractive option to achieve such imaging; however, simultaneous ExM imaging of proteins and mRNAs has not been demonstrated. Here, a technique for simultaneous ExM imaging of proteins and mRNAs in cultured cells and tissue slices, which we termed dual-expansion microscopy (dual-ExM), is demonstrated. First, we verified a protocol for the simultaneous labeling of proteins and mRNAs. Second, we combined the simultaneous labeling protocol with ExM to enable the simultaneous ExM imaging of proteins and mRNAs in cultured cells and mouse brain slices and quantitatively study the degree of signal retention after expansion. After expansion, both proteins and mRNAs can be visualized with a resolution beyond the diffraction limit of light in three dimensions. Dual-ExM is a versatile tool to study complex biological systems, such as the brain or tumor microenvironments, at a nanoscale resolution.
Asunto(s)
Proteínas , Animales , Línea Celular , Células Cultivadas , Ratones , Microscopía Fluorescente/métodos , ARN Mensajero/genéticaRESUMEN
Heterogeneous tissue models require the assembly and co-culture of multiple types of cells. Our recent work demonstrated taste signal transmission from gustatory cells to neurons by grafting single-stranded DNA into the cell membrane to construct multicellular assemblies. However, the weak DNA linkage and low grafting density allowed the formation of large gustatory cell self-aggregates that cannot communicate with neurons efficiently. This article presents the construction of artificial taste buds exhibiting active intercellular taste signal transmission through the hybridization of gustatory-neuronal multicellular interfaces using bioorthogonal click chemistry. Hybrid cell clusters were formed by the self-assembly of neonatal gustatory cells displaying tetrazine with a precultured embryonic hippocampal neuronal network displaying trans-cyclooctene. A bitter taste signal transduction was provoked in gustatory cells using denatonium benzoate and transmitted to neurons as monitored by intracellular calcium ion sensing. In the multicellular hybrids, the average number of signal transmissions was five to six peaks per cell, and the signal transmission lasted for â¼5 min with a signal-to-signal gap time of 10-40 s. The frequent and extended intercellular signal transmission suggests that the cell surface modification by the bioorthogonal click chemistry is a promising approach to fabricating functional multicellular hybrid clusters potentially useful for cell-based biosensors, toxicity assays, and tissue regeneration.
Asunto(s)
Papilas Gustativas , Técnicas de Cocultivo , Neuronas , Transducción de Señal , GustoRESUMEN
Visualization of the spatial distribution of biomolecules with nanoscale precision is essential to understanding the molecular mechanisms of biological phenomena and diseases. Among several state-of-the-art visualization techniques, expansion microscopy (ExM) is an attractive tool, as it can achieve sub-20-nm resolution imaging of biological specimens, even with conventional diffraction-limited microscopy. This chapter first introduces the concept of ExM and its variants and then provides practical guidelines for implementing expansion microscopy and related techniques.