Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35808656

RESUMEN

Gelatin, one of the most abundant, naturally derived biomacromolecules from collagen, is widely applicable in food additives, cosmetic ingredients, drug formulation, and wound dressing based on their non-toxicity and biodegradability. In parallel, polyvinyl alcohol (PVA), a synthetic polymer, has been commonly applied as a thickening agent for coating processes in aqueous systems and a major component in healthcare products for cartilage replacements, eye lubrication, and contact lenses. In this study, a new type of mixed hydrogel nanofiber was fabricated from gelatin and polyvinyl alcohol by electrospinning under a feasible range of polymer compositions. To determine the optimal composition of gelatin and polyvinyl alcohol in nanofiber fabrication, several key physicochemical properties of mixed polymer solutions such as viscosity, surface tension, pH, and electrical conductance were thoroughly characterized by a viscometer, surface tensiometer, water analyzer, and carbon electron probe. Moreover, the molecular structures of polymeric chains within mixed hydrogel nanofibers were investigated with Fourier-transform infrared spectroscopy. The morphologies and surface elemental compositions of the mixed hydrogel nanofibers were examined by the scanning electron microscope and energy-dispersive X-ray spectroscopy, respectively. The measurement of water contact angles was performed for measuring the hydrophilicity of nanofiber surfaces. Most importantly, the potential cytotoxicity of the electrospun nanofibers was evaluated by the in vitro culture of 3T3 fibroblasts. Through our extensive study, it was found that a PVA-rich solution (a volumetric ratio of gelatin/polyvinyl alcohol <1) would be superior for the efficient production of mixed hydrogel nanofibers by electrospinning techniques. This result is due to the appropriate balance between the higher viscosity (~420−~4300 10−2 poise) and slightly lower surface tension (~35.12−~32.68 mN/m2) of the mixed polymer solution. The regression on the viscosity data also found a good fit by the Lederer−Rougier's model for a binary mixture. For the hydrophilicity of nanofibers, the numerical analysis estimates that the value of interfacial energy for the water contact on nanofibers is around ~−0.028 to ~−0.059 J/m2.

2.
Sci Rep ; 8(1): 6159, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670156

RESUMEN

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to diagnose breast disease. Obtaining anatomical information from DCE-MRI requires the skin be manually removed so that blood vessels and tumors can be clearly observed by physicians and radiologists; this requires considerable manpower and time. We develop an automated skin segmentation algorithm where the surface skin is removed rapidly and correctly. The rough skin area is segmented by the active contour model, and analyzed in segments according to the continuity of the skin thickness for accuracy. Blood vessels and mammary glands are retained, which remedies the defect of removing some blood vessels in active contours. After three-dimensional imaging, the DCE-MRIs without the skin can be used to see internal anatomical information for clinical applications. The research showed the Dice's coefficients of the 3D reconstructed images using the proposed algorithm and the active contour model for removing skins are 93.2% and 61.4%, respectively. The time performance of segmenting skins automatically is about 165 times faster than manually. The texture information of the tumors position with/without the skin is compared by the paired t-test yielded all p < 0.05, which suggested the proposed algorithm may enhance observability of tumors at the significance level of 0.05.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Mama/patología , Aumento de la Imagen , Imagen por Resonancia Magnética , Piel/patología , Algoritmos , Medios de Contraste , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos
3.
PLoS One ; 11(12): e0167644, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27936201

RESUMEN

To elucidate whether Sterol O-acyltransferase (Soat) mediates the absorption and transportation of yolk lipids to the developing embryo, zebrafish soat1 and soat2 were cloned and studied. In the adult zebrafish, soat1 was detected ubiquitously while soat2 mRNA was detected specifically in the liver, intestine, brain and testis. Whole mount in situ hybridization demonstrated that both soat1 and soat2 expressed in the yolk syncytial layer, hatching gland and developing cardiovascular as well as digestive systems, suggesting that Soats may play important roles in the lipid trafficking and utilization during embryonic development. The enzymatic activity of zebrafish Soat2 was confirmed by Oil Red O staining in the HEK293 cells overexpressing this gene, and could be quenched by Soat2 inhibitor Pyripyropene A (PPPA). The zebrafish embryos injected with PPPA or morpholino oligo against soat2 in the yolk showed significantly larger yolk when compared with wild-type embryos, especially at 72 hpf, indicating a slower rate of yolk consumption. Our result indicated that zebrafish Soat2 is catalytically active in synthesizing cholesteryl esters and contributes to the yolk cholesterol trafficking during zebrafish embryogenesis.


Asunto(s)
Colesterol/metabolismo , Yema de Huevo/metabolismo , Esterol O-Aciltransferasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Ésteres del Colesterol/metabolismo , Células HEK293 , Humanos , Alineación de Secuencia , Esterol O-Aciltransferasa/análisis , Pez Cebra/metabolismo , Esterol O-Aciltransferasa 2
4.
Vet Microbiol ; 195: 128-135, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27771058

RESUMEN

Actinobacillus pleuropneumoniae is a crucial respiratory pathogen that causes fibrinous, hemorrhagic, necrotizing pleuropneumonia in pigs. A. pleuropneumoniae exotoxins (ApxI to IV) are the major virulence factors contributing to A. pleuropneumoniae pathogenesis. Previously, we demonstrated that ApxI induces the expression of proinflammatory cytokines in porcine alveolar macrophages (PAMs) via the mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK). Nonetheless, the role of nuclear factor (NF)-κB-a transcription factor widely implicated in immune and inflammatory responses-in ApxI-elicited cytokine production has yet to be defined. In the present study, we examined the involvement of NF-κB in ApxI-elicited production of interleukin (IL)-1ß, IL-8, and tumor necrosis factor (TNF)-α in PAMs and investigated the correlation between NF-κB and MAPK (p38 and JNK) pathways in this event. The results of Western blot analysis, confocal microscopy, and a DNA binding activity assay revealed that the classical NF-κB pathway was activated by ApxI, as evidenced by the decreased levels of IκB and subsequent NF-κB translocation and activation in ApxI-stimulated PAMs. Moreover, the blocking of ApxI-induced NF-κB activation significantly attenuated the levels of mRNA and protein secretion of IL-1ß, IL-8, and TNF-α in PAMs. Notably, the attenuation of JNK activation by a specific inhibitor (SP600125) reduced ApxI-induced NF-κB activation, whereas a p38 blocker (SB203580) had no effect on the NF-κB pathway. Further examination revealed that the level of phosphorylation at serine 536 on the NF-κB p65 subunit was dependent on JNK activity. Collectively, this study, for the first time, demonstrates a pivotal role of NF-κB in ApxI-induced IL-1ß, IL-8, and TNF-α production; JNK, but not p38, may positively affect the activation of the classical NF-κB pathway.


Asunto(s)
Actinobacillus pleuropneumoniae/metabolismo , Citocinas/metabolismo , Exotoxinas/farmacología , Macrófagos Alveolares/metabolismo , FN-kappa B/metabolismo , Porcinos , Animales , Antígenos CD18 , Citocinas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Inflamación/metabolismo , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Macrófagos Alveolares/microbiología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
J Vet Sci ; 15(1): 81-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23820218

RESUMEN

Exotoxins produced by Actinobacillus (A.) pleuropneumoniae (Apx) play major roles in the pathogenesis of pleuropneumonia in swine. This study investigated the role of ApxI in hemolysis and cellular damage using a novel apxIA mutant, ApxIA336, which was developed from the parental strain A. pleuropneumoniae serotype 10 that produces only ApxI in vitro. The genotype of ApxIA336 was confirmed by PCR, Southern blotting, and gene sequencing. Exotoxin preparation derived from ApxIA336 was analyzed for its bioactivity towards porcine erythrocytes and alveolar macrophages. Analysis results indicated that ApxIA336 contained a kanamycin- resistant cassette inserted immediately after 1005 bp of the apxIA gene. Phenotype analysis of ApxIA336 revealed no difference in the growth rate as compared to the parental strain. Meanwhile, ApxI production was abolished in the bacterial culture supernatant, i.e. exotoxin preparation. The inability of ApxIA336 to produce ApxI corresponded to the loss of hemolytic and cytotoxic bioactivity in exotoxin preparation, as demonstrated by hemolysis, lactate dehydrogenase release, mitochondrial activity, and apoptosis assays. Additionally, the virulence of ApxIA336 appeared to be attenuated by 15-fold in BALB/c mice. Collectively, ApxI, but not other components in the exotoxin preparation of A. pleuropneumoniae serotype 10, was responsible for the hemolytic and cytotoxic effects on porcine erythrocytes and alveolar macrophages.


Asunto(s)
Actinobacillus pleuropneumoniae/fisiología , Actinobacillus pleuropneumoniae/patogenicidad , Apoptosis , Exotoxinas/genética , Hemólisis , Macrófagos Alveolares/microbiología , Actinobacillus pleuropneumoniae/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Southern Blotting , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Macrófagos Alveolares/metabolismo , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Porcinos , Virulencia
6.
PLoS One ; 8(7): e70548, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23923003

RESUMEN

The positive-strand coronavirus genome of ~30 kilobase in length and subgenomic (sg) mRNAs of shorter lengths, are 5' and 3'-co-terminal by virtue of a common 5'-capped leader and a common 3'-polyadenylated untranslated region. Here, by ligating head-to-tail viral RNAs from bovine coronavirus-infected cells and sequencing across the ligated junctions, it was learned that at the time of peak viral RNA synthesis [6 hours postinfection (hpi)] the 3' poly(A) tail on genomic and sgmRNAs is ~65 nucleotides (nt) in length. Surprisingly, this length was found to vary throughout infection from ~45 nt immediately after virus entry (at 0 to 4 hpi) to ~65 nt later on (at 6 h to 9 hpi) and from ~65 nt (at 6 h to 9 hpi) to ~30 nt (at 120-144 hpi). With the same method, poly(U) sequences of the same lengths were simultaneously found on the ligated viral negative-strand RNAs. Functional analyses of poly(A) tail length on specific viral RNA species, furthermore, revealed that translation, in vivo, of RNAs with the longer poly(A) tail was enhanced over those with the shorter poly(A). Although the mechanisms by which the tail lengths vary is unknown, experimental results together suggest that the length of the poly(A) and poly(U) tails is regulated. One potential function of regulated poly(A) tail length might be that for the coronavirus genome a longer poly(A) favors translation. The regulation of coronavirus translation by poly(A) tail length resembles that during embryonal development suggesting there may be mechanistic parallels.


Asunto(s)
Coronavirus/genética , Regulación Viral de la Expresión Génica , Poli A/genética , ARN Mensajero/genética , ARN Viral/genética , Línea Celular , Infecciones por Coronavirus , Orden Génico , Variación Genética , Genoma Viral , Humanos , Poli A/metabolismo , Poliadenilación , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Replicación Viral
7.
Vet Res ; 42: 25, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21314908

RESUMEN

Actinobacillus pleuropneumoniae (A. pleuropneumoniae) causes fibrino-hemorrhagic necrotizing pleuropneumonia in pigs. Production of proinflammatory mediators in the lungs is an important feature of A. pleuropneumoniae infection. However, bacterial components other than lipopolysaccharide involved in this process remain unidentified. The goals of this study were to determine the role of A. pleuropneumoniae exotoxin ApxI in cytokine induction and to delineate the underlying mechanisms. Using real-time quantitative PCR analysis, we found native ApxI stimulated porcine alveolar macrophages (PAMs) to transcribe mRNAs of IL-1ß, IL-8 and TNF-α in a concentration- and time-dependent manner. Heat-inactivation or pre-incubation of ApxI with a neutralizing antiserum attenuated ApxI bioactivity to induce cytokine gene expression. The secretion of IL-1ß, IL-8 and TNF-α protein from PAMs stimulated with ApxI was also confirmed by quantitative ELISA. In delineating the underlying signaling pathways contributing to cytokine expression, we observed mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK) were activated upon ApxI stimulation. Administration of an inhibitor specific to p38 or JNK resulted in varying degrees of attenuation on ApxI-induced cytokine expression, suggesting the differential regulatory roles of p38 and JNK in IL-1ß, IL-8 and TNF-α production. Further, pre-incubation of PAMs with a CD18-blocking antibody prior to ApxI stimulation significantly reduced the activation of p38 and JNK, and subsequent expression of IL-1ß, IL-8 or TNF-α gene, indicating a pivotal role of ß2 integrins in the ApxI-mediated effect. Collectively, this study demonstrated ApxI induces gene expression of IL-1ß, IL-8 and TNF-α in PAMs that involves ß2 integrins and downstream MAPKs.


Asunto(s)
Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Interleucina-1beta/genética , Interleucina-8/genética , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Factor de Necrosis Tumoral alfa/genética , Infecciones por Actinobacillus/inmunología , Infecciones por Actinobacillus/microbiología , Animales , Western Blotting/veterinaria , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos Alveolares/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Transducción de Señal , Sus scrofa , Porcinos , Azul de Tripano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...