Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38004466

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a complex disease resulting from chronic liver injury associated with obesity, type 2 diabetes, and inflammation. Recently, the importance of developing multi-target drugs as a strategy to address complex diseases such as NASH has been growing; however, their manufacturing processes remain time- and cost-intensive and inefficient. To overcome these limitations, we developed UniStac, a novel enzyme-mediated conjugation platform for multi-specific drug development. UniStac demonstrated high conjugation yields, optimal thermal stabilities, and robust biological activities. We designed a tetra-specific compound, C-192, targeting glucagon-like peptide 1 (GLP-1), glucagon (GCG), fibroblast growth factor 21 (FGF21), and interleukin-1 receptor antagonist (IL-1RA) simultaneously for the treatment of NASH using UniStac. The biological activity and treatment efficacy of C-192 were confirmed both in vitro and in vivo using a methionine-choline-deficient (MCD) diet-induced mouse model. C-192 exhibited profound therapeutic efficacies compared to conventional drugs, including liraglutide and dulaglutide. C-192 significantly improved alanine transaminase levels, triglyceride accumulation, and the non-alcoholic fatty liver disease activity score. In this study, we demonstrated the feasibility of UniStac in creating multi-specific drugs and confirmed the therapeutic potential of C-192, a drug that integrates multiple mechanisms into a single molecule for the treatment of NASH.

2.
JCI Insight ; 8(21)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37788099

RESUMEN

Glioblastoma (GBM) is the most lethal brain cancer with a dismal prognosis. Stem-like GBM cells (GSCs) are a major driver of GBM propagation and recurrence; thus, understanding the molecular mechanisms that promote GSCs may lead to effective therapeutic approaches. Through in vitro clonogenic growth-based assays, we determined mitogenic activities of the ligand molecules that are implicated in neural development. We have identified that semaphorin 3A (Sema3A), originally known as an axon guidance molecule in the CNS, promotes clonogenic growth of GBM cells but not normal neural progenitor cells (NPCs). Mechanistically, Sema3A binds to its receptor neuropilin-1 (NRP1) and facilitates an interaction between NRP1 and TGF-ß receptor 1 (TGF-ßR1), which in turn leads to activation of canonical TGF-ß signaling in both GSCs and NPCs. TGF-ß signaling enhances self-renewal and survival of GBM tumors through induction of key stem cell factors, but it evokes cytostatic responses in NPCs. Blockage of the Sema3A/NRP1 axis via shRNA-mediated knockdown of Sema3A or NRP1 impeded clonogenic growth and TGF-ß pathway activity in GSCs and inhibited tumor growth in vivo. Taken together, these findings suggest that the Sema3A/NRP1/TGF-ßR1 signaling axis is a critical regulator of GSC propagation and a potential therapeutic target for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Glioblastoma/patología , Neuropilina-1/genética , Neoplasias Encefálicas/patología , Factor de Crecimiento Transformador beta
3.
Neoplasia ; 39: 100894, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36972629

RESUMEN

Recent studies indicate that signaling molecules traditionally associated with central nervous system function play critical roles in cancer. Dopamine receptor signaling is implicated in various cancers including glioblastoma (GBM) and it is a recognized therapeutic target, as evidenced by recent clinical trials with a selective dopamine receptor D2 (DRD2) inhibitor ONC201. Understanding the molecular mechanism(s) of the dopamine receptor signaling will be critical for development of potent therapeutic options. Using the human GBM patient-derived tumors treated with dopamine receptor agonists and antagonists, we identified the proteins that interact with DRD2. DRD2 signaling promotes glioblastoma (GBM) stem-like cells and GBM growth by activating MET. In contrast, pharmacological inhibition of DRD2 induces DRD2-TRAIL receptor interaction and subsequent cell death. Thus, our findings demonstrate a molecular circuitry of oncogenic DRD2 signaling in which MET and TRAIL receptors, critical factors for tumor cell survival and cell death, respectively, govern GBM survival and death. Finally, tumor-derived dopamine and expression of dopamine biosynthesis enzymes in a subset of GBM may guide patient stratification for DRD2 targeting therapy.


Asunto(s)
Glioblastoma , Humanos , Línea Celular Tumoral , Dopamina , Glioblastoma/patología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Transducción de Señal , Receptores de Dopamina D2/metabolismo
4.
Genome Biol ; 21(1): 216, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32847614

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a complex disease with extensive molecular and transcriptional heterogeneity. GBM can be subcategorized into four distinct subtypes; tumors that shift towards the mesenchymal phenotype upon recurrence are generally associated with treatment resistance, unfavorable prognosis, and the infiltration of pro-tumorigenic macrophages. RESULTS: We explore the transcriptional regulatory networks of mesenchymal-associated tumor-associated macrophages (MA-TAMs), which drive the malignant phenotypic state of GBM, and identify macrophage receptor with collagenous structure (MARCO) as the most highly differentially expressed gene. MARCOhigh TAMs induce a phenotypic shift towards mesenchymal cellular state of glioma stem cells, promoting both invasive and proliferative activities, as well as therapeutic resistance to irradiation. MARCOhigh TAMs also significantly accelerate tumor engraftment and growth in vivo. Moreover, both MA-TAM master regulators and their target genes are significantly correlated with poor clinical outcomes and are often associated with genomic aberrations in neurofibromin 1 (NF1) and phosphoinositide 3-kinases/mammalian target of rapamycin/Akt pathway (PI3K-mTOR-AKT)-related genes. We further demonstrate the origination of MA-TAMs from peripheral blood, as well as their potential association with tumor-induced polarization states and immunosuppressive environments. CONCLUSIONS: Collectively, our study characterizes the global transcriptional profile of TAMs driving mesenchymal GBM pathogenesis, providing potential therapeutic targets for improving the effectiveness of GBM immunotherapy.


Asunto(s)
Redes Reguladoras de Genes , Glioblastoma/genética , Macrófagos Asociados a Tumores , Animales , Carcinogénesis , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Glioma/genética , Humanos , Inmunoterapia , Macrófagos/metabolismo , Ratones , Neurofibromina 1/genética , Fenotipo , Pronóstico , Células Madre , Transcriptoma , Microambiente Tumoral
5.
J Exp Med ; 216(5): 1120-1134, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30898893

RESUMEN

Glioblastoma (GBM) is the most malignant brain tumor with profound genomic alterations. Tumor suppressor genes regulate multiple signaling networks that restrict cellular proliferation and present barriers to malignant transformation. While bona fide tumor suppressors such as PTEN and TP53 often undergo inactivation due to mutations, there are several genes for which genomic deletion is the primary route for tumor progression. To functionally identify putative tumor suppressors in GBM, we employed in vivo RNAi screening using patient-derived xenograft models. Here, we identified PIP4K2A, whose functional role and clinical relevance remain unexplored in GBM. We discovered that PIP4K2A negatively regulates phosphoinositide 3-kinase (PI3K) signaling via p85/p110 component degradation in PTEN-deficient GBMs and specifically targets p85 for proteasome-mediated degradation. Overexpression of PIP4K2A suppressed cellular and clonogenic growth in vitro and impeded tumor growth in vivo. Our results unravel a novel tumor-suppressive role of PIP4K2A for the first time and support the feasibility of combining oncogenomics with in vivo RNAi screen.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Glioblastoma/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Neoplasias Encefálicas/patología , Carcinogénesis/metabolismo , Proliferación Celular/genética , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Femenino , Glioblastoma/patología , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Interferencia de ARN , Transducción Genética , Carga Tumoral/genética
6.
Cancer Res ; 77(18): 4973-4984, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28754668

RESUMEN

Necrosis is a hallmark of glioblastoma (GBM) and is responsible for poor prognosis and resistance to conventional therapies. However, the molecular mechanisms underlying necrotic microenvironment-induced malignancy of GBM have not been elucidated. Here, we report that transglutaminase 2 (TGM2) is upregulated in the perinecrotic region of GBM and triggered mesenchymal (MES) transdifferentiation of glioma stem cells (GSC) by regulating master transcription factors (TF), such as C/EBPß, TAZ, and STAT3. TGM2 expression was induced by macrophages/microglia-derived cytokines via NF-κB activation and further degraded DNA damage-inducible transcript 3 (GADD153) to induce C/EBPß expression, resulting in expression of the MES transcriptome. Downregulation of TGM2 decreased sphere-forming ability, tumor size, and radioresistance and survival in a xenograft mouse model through a loss of the MES signature. A TGM2-specific inhibitor GK921 blocked MES transdifferentiation and showed significant therapeutic efficacy in mouse models of GSC. Moreover, TGM2 expression was significantly increased in recurrent MES patients and inversely correlated with patient prognosis. Collectively, our results indicate that TGM2 is a key molecular switch of necrosis-induced MES transdifferentiation and an important therapeutic target for MES GBM. Cancer Res; 77(18); 4973-84. ©2017 AACR.


Asunto(s)
Neoplasias Encefálicas/patología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas de Unión al GTP/antagonistas & inhibidores , Glioma/patología , Células Madre Mesenquimatosas/patología , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/patología , Transglutaminasas/antagonistas & inhibidores , Animales , Apoptosis , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Transdiferenciación Celular , Femenino , Proteínas de Unión al GTP/metabolismo , Glioma/genética , Glioma/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Recurrencia Local de Neoplasia/metabolismo , Células Madre Neoplásicas/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Cell Endocrinol ; 451: 53-65, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28089821

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive form of cancer that begins within the brain; generally, the patient has a dismal prognosis and limited therapeutic options. Signal transducer and activator of transcription 3 (STAT3) is a critical mediator of tumorigenesis, tumor progression, and suppression of anti-tumor immunity in GBM. In a high percentage of GBM cells and tumor microenvironments, persistent activation of STAT3 induces cell proliferation, anti-apoptosis, glioma stem cell maintenance, tumor invasion, angiogenesis, and immune evasion. This makes STAT3 an attractive therapeutic target and a prognostic indicator in GBM. Targeting STAT3 affords an opportunity to disrupt multiple pro-oncogenic pathways at a single molecular hub. Unfortunately, there are no successful STAT3 inhibitors currently in clinical trials. However, strong clinical evidence implicating STAT3 as a major factor in GBM justifies the identification of safe and effective strategies for inhibiting STAT3.


Asunto(s)
Neoplasias Encefálicas/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Factor de Transcripción STAT3/genética , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/inmunología , Glioblastoma/diagnóstico , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Humanos , Evasión Inmune , Terapia Molecular Dirigida , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Pronóstico , Factor de Transcripción STAT3/inmunología , Transducción de Señal , Microambiente Tumoral/efectos de los fármacos
8.
Oncotarget ; 7(32): 51626-51639, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27438149

RESUMEN

Muscle-invasive bladder cancer (MIBC) consists of a heterogeneous group of tumors with a high rate of metastasis and mortality. To facilitate the in-depth investigation and validation of tailored strategies for MIBC treatment, we have developed an integrated approach using advanced high-throughput drug screening and a clinically relevant patient-derived preclinical platform. We isolated patient-derived tumor cells (PDCs) from a rare MIBC case (BD-138T) that harbors concomitant epidermal growth factor receptor (EGFR) amplification and phosphatase and tensin homolog (PTEN) deletion. High-throughput in vitro drug screening demonstrated that dasatinib, a SRC inhibitor, and PKI-587, a dual PI3K/mTOR inhibitor, exhibited targeted anti-proliferative and pro-apoptotic effects against BD-138T PDCs. Using established patient-derived xenograft models that successfully retain the genomic and molecular characteristics of the parental tumor, we confirmed that these anti-tumor responses occurred through the inhibition of SRC and PI3K/AKT/mTOR signaling pathways. Taken together, these experimental results demonstrate that dasatinib and PKI-587 might serve as promising anticancer drug candidates for treating MIBC with combined EGFR gene amplification and PTEN deletion.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Transicionales/patología , Dasatinib/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Receptores ErbB/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Vejiga Urinaria/patología , Antineoplásicos/uso terapéutico , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/genética , Línea Celular Tumoral , Dasatinib/uso terapéutico , Amplificación de Genes , Eliminación de Gen , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de los Músculos/tratamiento farmacológico , Neoplasias de los Músculos/genética , Neoplasias de los Músculos/secundario , Mutación , Invasividad Neoplásica , Cultivo Primario de Células/métodos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
9.
Neuro Oncol ; 18(1): 37-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26032834

RESUMEN

BACKGROUND: Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. METHODS: We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. RESULTS: USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. CONCLUSION: USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de la radiación , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Ratones , Proteínas Quinasas/metabolismo , Células Tumorales Cultivadas , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores
10.
Cancer Cell ; 23(6): 839-52, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23684459

RESUMEN

Glioblastoma multiforme (GBM) displays cellular hierarchies harboring a subpopulation of stem-like cells (GSCs). Enhancer of Zeste Homolog 2 (EZH2), the lysine methyltransferase of Polycomb repressive complex 2, mediates transcriptional repression of prodifferentiation genes in both normal and neoplastic stem cells. An oncogenic role of EZH2 as a transcriptional silencer is well established; however, additional functions of EZH2 are incompletely understood. Here, we show that EZH2 binds to and methylates STAT3, leading to enhanced STAT3 activity by increased tyrosine phosphorylation of STAT3. The EZH2-STAT3 interaction preferentially occurs in GSCs relative to non-stem bulk tumor cells, and it requires a specific phosphorylation of EZH2. Inhibition of EZH2 reverses the silencing of Polycomb target genes and diminishes STAT3 activity, suggesting therapeutic strategies.


Asunto(s)
Glioblastoma/metabolismo , Complejo Represivo Polycomb 2/fisiología , Factor de Transcripción STAT3/metabolismo , Animales , Transformación Celular Neoplásica , Proteína Potenciadora del Homólogo Zeste 2 , Silenciador del Gen , Glioblastoma/patología , Humanos , Metilación , Ratones , Fosforilación , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Trasplante Heterólogo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...