Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585793

RESUMEN

Transposable elements (TEs) make up the bulk of eukaryotic genomes and examples abound of TE-derived sequences repurposed for organismal function. The process by which TEs become coopted remains obscure because most cases involve ancient, transpositionally inactive elements. Reports of active TEs serving beneficial functions are scarce and often contentious due to difficulties in manipulating repetitive sequences. Here we show that recently active TEs in zebrafish encode products critical for embryonic development. Knockdown and rescue experiments demonstrate that the endogenous retrovirus family BHIKHARI-1 (Bik-1) encodes a Gag protein essential for mesoderm development. Mechanistically, Bik-1 Gag associates with the cell membrane and its ectopic expression in chicken embryos alters cell migration. Similarly, depletion of BHIKHARI-2 Gag, a relative of Bik-1, causes defects in neural crest development in zebrafish. We propose an "addiction" model to explain how active TEs can be integrated into conserved developmental processes.

2.
Genome Res ; 33(8): 1325-1339, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37714714

RESUMEN

Cys2-His2 zinc finger genes (ZNFs) form the largest family of transcription factors in metazoans. ZNF evolution is highly dynamic and characterized by the rapid expansion and contraction of numerous subfamilies across the animal phylogeny. The forces and mechanisms underlying rapid ZNF evolution remain poorly understood, but there is growing evidence that, in tetrapods, the targeting and repression of lineage-specific transposable elements (TEs) plays a critical role in the evolution of the Krüppel-associated box ZNF (KZNF) subfamily. Currently, it is unknown whether this function and coevolutionary relationship is unique to KZNFs or is a broader feature of metazoan ZNFs. Here, we present evidence that genomic conflict with TEs has been a central driver of the diversification of ZNFs in animals. Sampling from 3221 genome assemblies, we show that the copy number of retroelements correlates with that of ZNFs across at least 750 million years of metazoan evolution. Using computational predictions, we show that ZNFs preferentially bind TEs in diverse animal species. We further investigate the largest ZNF subfamily found in cyprinid fish, which is characterized by a conserved sequence we dubbed the fish N-terminal zinc finger-associated (FiNZ) domain. Zebrafish possess approximately 700 FiNZ-ZNFs, many of which are evolving adaptively under positive selection. Like mammalian KZNFs, most zebrafish FiNZ-ZNFs are expressed at the onset of zygotic genome activation, and blocking their translation using morpholinos during early embryogenesis results in derepression of transcriptionally active TEs. Together, these data suggest that ZNF diversification has been intimately connected to TE expansion throughout animal evolution.


Asunto(s)
Elementos Transponibles de ADN , Pez Cebra , Animales , Elementos Transponibles de ADN/genética , Pez Cebra/genética , Dedos de Zinc/genética , Factores de Transcripción/genética , Mamíferos/genética , Evolución Molecular
3.
Genome Res ; 32(7): 1408-1423, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34987056

RESUMEN

There is considerable interest in understanding the effect of transposable elements (TEs) on embryonic development. Studies in humans and mice are limited by the difficulty of working with mammalian embryos and by the relative scarcity of active TEs in these organisms. The zebrafish is an outstanding model for the study of vertebrate development, and over half of its genome consists of diverse TEs. However, zebrafish TEs remain poorly characterized. Here we describe the demography and genomic distribution of zebrafish TEs and their expression throughout embryogenesis using bulk and single-cell RNA sequencing data. These results reveal a highly dynamic genomic ecosystem comprising nearly 2000 distinct TE families, which vary in copy number by four orders of magnitude and span a wide range of ages. Longer retroelements tend to be retained in intergenic regions, whereas short interspersed nuclear elements (SINEs) and DNA transposons are more frequently found nearby or within genes. Locus-specific mapping of TE expression reveals extensive TE transcription during development. Although two-thirds of TE transcripts are likely driven by nearby gene promoters, we still observe stage- and tissue-specific expression patterns in self-regulated TEs. Long terminal repeat (LTR) retroelements are most transcriptionally active immediately following zygotic genome activation, whereas DNA transposons are enriched among transcripts expressed in later stages of development. Single-cell analysis reveals several endogenous retroviruses expressed in specific somatic cell lineages. Overall, our study provides a valuable resource for using zebrafish as a model to study the impact of TEs on vertebrate development.


Asunto(s)
Elementos Transponibles de ADN , Pez Cebra , Animales , Elementos Transponibles de ADN/genética , Ecosistema , Genómica/métodos , Humanos , Mamíferos/genética , Ratones , Retroelementos/genética , Pez Cebra/genética
4.
Genetics ; 220(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791215

RESUMEN

Caenorhabditis elegans benefits from a large set of tools for genome manipulation. Yet, the precise single-copy insertion of very large DNA constructs (>10 kb) and the generation of inversions are still challenging. Here, we adapted the phiC31 integrase system for C. elegans. We generated an integrated phiC31 integrase expressing strain flanked by attP sites that serves as a landing pad for integration of transgenes by recombination-mediated cassette exchange (RCME). This strain is unc-119(-) so RMCE integrants can be produced simply by injection of a plasmid carrying attB sites flanking unc-119(+) and the gene(s) of interest. Additionally, phiC31 integrase is removed concomitantly with integration, eliminating the need to outcross away the integrase. Integrations were obtained for insert sizes up to ∼33.4 kb. Taking advantage of this integration method we establish a dual-color fluorescent operon reporter system able to study post-transcriptional regulation of mRNA. Last, we show that large chromosomal segments can be inverted using phiC31 integrase. Thus, the phiC31 integrase system should be a useful addition to the C. elegans toolkit.


Asunto(s)
Bacteriófagos , Proteínas de Caenorhabditis elegans , Animales , Bacteriófagos/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Integrasas/genética , Proteínas del Tejido Nervioso/genética , Recombinación Genética , Transgenes
5.
Mol Ecol ; 29(1): 105-120, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31736148

RESUMEN

In the fire ant Solenopsis invicta, a supergene composed of ~600 genes and having two variants, SB and Sb, regulates colony social form. In single queen colonies, all individuals carry only the SB allele, while in multiple queen colonies, some individuals carry the Sb allele. In this study, we characterized genes with copy number variation between SB and Sb-carrying individuals. We showed extensive acquisition of gene duplicates in the Sb genome, with some likely involved in polygyne-related phenotypes. We found 260 genes with copy number differences between SB and Sb, of which 239 have greater copy number in Sb. We observed transposable element (TE) accumulation on Sb, likely due to the accumulation of repetitive elements on the nonrecombining chromosome. We found a weak correlation between TE copy number and differential expression, suggesting some TEs may still be proliferating in Sb while many of the duplicated TEs have presumably been silenced. Among the 115 non-TE genes with higher copy in Sb, enzymes responsible for cuticular hydrocarbon synthesis were highly represented. These include a desaturase and an elongase, both potentially responsible for differential queen odour and likely beneficial for polygyne ants. These genes seem to have translocated into the supergene from other chromosomes and proliferated by multiple duplication events. While the presence of TEs in supergenes is well documented, little is known about duplication of non-TE genes and their possible adaptive role. Overall, our results suggest that gene duplications may be an important factor leading to monogyne and polygyne ant societies.


Asunto(s)
Hormigas/genética , Cromosomas/genética , Variaciones en el Número de Copia de ADN , Elementos Transponibles de ADN/genética , Alelos , Animales , Hormigas/fisiología , Conducta Animal , Ecología , Femenino , Masculino , Fenotipo , Conducta Social
6.
Genes Dev ; 33(17-18): 1098-1116, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31481535

RESUMEN

Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.


Asunto(s)
Evolución Biológica , Elementos Transponibles de ADN/fisiología , Eucariontes/fisiología , Interacciones Huésped-Patógeno/fisiología , Adaptación Fisiológica/genética , Animales , Elementos Transponibles de ADN/genética , Eucariontes/genética , Genoma/genética , Humanos
7.
Nat Ecol Evol ; 2(11): 1782-1791, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30349091

RESUMEN

Specialized queens and life-time unmated workers evolved once in the common ancestor of all ants, but whether caste development across ants continues to be at least partly regulated by a single core set of genes remains obscure. We analysed brain transcriptomes from five ant species (three subfamilies) and reconstructed the origins of genes with caste-biased expression. Ancient genes predating the Neoptera were more likely to regulate gyne (virgin queen) phenotypes, while the caste differentiation roles of younger, ant-lineage-specific genes varied. Transcriptome profiling showed that the ancestral network for caste-specific gene regulation has been maintained, but that signatures of common ancestry are obscured by later modifications. Adjusting for such differences, we identified a core gene-set that: (1) consistently displayed similar directions and degrees of caste-differentiated expression; and (2) have mostly not been reported as being involved in caste differentiation. These core regulatory genes exist in the genomes of ant species that secondarily lost the queen caste, but expression differences for reproductive and sterile workers are minor and similar to social paper wasps that lack differentiated castes. Many caste-biased ant genes have caste-differentiated expression in honeybees, but directions of caste bias were uncorrelated, as expected when permanent castes evolved independently in both lineages.


Asunto(s)
Hormigas/genética , Redes Reguladoras de Genes , Animales , Encéfalo/metabolismo , Rasgos de la Historia de Vida
8.
Proc Biol Sci ; 285(1878)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769360

RESUMEN

Supergenes consist of co-adapted loci that segregate together and are associated with adaptive traits. In the fire ant Solenopsis invicta, two 'social' supergene variants regulate differences in colony queen number and other traits. Suppressed recombination in this system is maintained, in part, by a greater than 9 Mb inversion, but the supergene is larger. Has the supergene in S. invicta undergone multiple large inversions? The initial gene content of the inverted allele of a supergene would be the same as that of the wild-type allele. So, how did the inversion increase in frequency? To address these questions, we cloned one extreme breakpoint in the fire ant supergene. In doing so, we found a second large (greater than 800 Kb) rearrangement. Furthermore, we determined the temporal order of the two big inversions based on the translocation pattern of a third small fragment. Because the S. invicta supergene lacks evolutionary strata, our finding of multiple inversions may support an introgression model of the supergene. Finally, we showed that one of the inversions swapped the promoter of a breakpoint-adjacent gene, which might have conferred a selective advantage relative to the non-inverted allele. Our findings provide a rare example of gene alterations arising directly from an inversion event.


Asunto(s)
Hormigas/genética , Evolución Molecular , Expresión Génica , Animales , Inversión de Secuencia , Conducta Social , Taiwán
9.
Cell ; 170(4): 727-735.e10, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802042

RESUMEN

Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT.


Asunto(s)
Hormigas/genética , Hormigas/fisiología , Proteínas de Insectos/metabolismo , Receptores Odorantes/metabolismo , Animales , Antenas de Artrópodos/citología , Antenas de Artrópodos/fisiología , Proteínas de Insectos/genética , Mutagénesis , Mutación , Odorantes , Receptores Odorantes/genética , Conducta Social
10.
BMC Evol Biol ; 16: 189, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27628313

RESUMEN

BACKGROUND: Centromeres are essential for accurate chromosome segregation, yet sequence conservation is low even among closely related species. Centromere drive predicts rapid turnover because some centromeric sequences may compete better than others during female meiosis. In addition to sequence composition, longer centromeres may have a transmission advantage. RESULTS: We report the first observations of extremely long centromeres, covering on average 34 % of the chromosomes, in the red imported fire ant Solenopsis invicta. By comparison, cytological examination of Solenopsis geminata revealed typical small centromeric constrictions. Bioinformatics and molecular analyses identified CenSol, the major centromeric satellite DNA repeat. We found that CenSol sequences are very similar between the two species but the CenSol copy number in S. invicta is much greater than that in S. geminata. In addition, centromere expansion in S. invicta is not correlated with the duplication of CenH3. Comparative analyses revealed that several closely related fire ant species also possess long centromeres. CONCLUSIONS: Our results are consistent with a model of simple runaway centromere expansion due to centromere drive. We suggest expanded centromeres may be more prevalent in hymenopteran insects, which use haplodiploid sex determination, than previously considered.


Asunto(s)
Hormigas/genética , Centrómero/genética , Evolución Molecular , Animales , Secuencia de Bases , Cromosomas/genética , Secuencia Conservada/genética , Variaciones en el Número de Copia de ADN/genética , ADN Satélite/genética , Genoma de los Insectos , Haploidia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...