RESUMEN
BACKGROUND: Fowl adenovirus-4 is a causative agent of hydropericardium hepatitis syndrome (HHS) in chickens and has been frequently reported from many countries. Fowl adenoviruses cause severe disease and mortality in broiler and layer breeders in Azerbaijan. Therefore, in this study, pathological lesions and the dissemination of fowl adenovirus-4 into the visceral organs of infected birds were investigated as well as molecular characterisation of detected strains. For this, liver, heart and spleen from 20 necropsied chickens originated from a broiler breeder flock and a layer breeder flock were embeded on the FTA cards and the samples were analysed for adenovirus-DNA by PCR and sequencing. RESULTS: The findings of necropsy in both broiler and layer breeder chickens were similar, and the liver was severely effected showing hepatitis, and the heart with hydropericardium lesions. The kidneys were swollen with haemorrhages and small white foci on the surface of the spleens were noted. Intestinal congestion and ecchymotic hemorrhages were also observed in some birds. Fowl adenovirus-4-DNA was detected by PCR in all collected organs of 20 birds. The sequence analysis revealed that fowl adenovirus-4 present in Azerbaijan and close similarity of the hexon genes of the adenoviruses existing in the Middle East, North America, far east and Indian subcontinent were determined by phylogenetic analysis. However, sequence diversity was detected from the adenovirus strains circulating in Europe, North and South America. CONCLUSIONS: This study indicates the impact of fowl adenovirus-4 on the poultry health and production, and improved disease control and prevention strategies are necessary to reduce the HHS disease in chickens in Azerbaijan.
Asunto(s)
Infecciones por Adenoviridae , Pollos , Filogenia , Enfermedades de las Aves de Corral , Animales , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/patología , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/virología , Infecciones por Adenoviridae/epidemiología , Azerbaiyán/epidemiología , Aviadenovirus/genética , Aviadenovirus/aislamiento & purificación , Aviadenovirus/clasificación , Hepatitis Viral Animal/virología , Hepatitis Viral Animal/patología , Hepatitis Viral Animal/epidemiología , ADN Viral/genética , Hígado/patología , Hígado/virología , Bazo/patología , Bazo/virologíaRESUMEN
High pathogenicity avian influenza (HPAI) H5N1 is a subtype of the influenza A virus primarily found in birds. The subtype emerged in China in 1996 and has spread globally, causing significant morbidity and mortality in birds and humans. In Cambodia, a lethal case was reported in February 2023 involving an 11-year-old girl, marking the first human HPAI H5N1 infection in the country since 2014. This research examined the zoonotic potential of the human H5N1 isolate, A/Cambodia/NPH230032/2023 (KHM/23), by assessing its receptor binding, fusion pH, HA thermal stability, and antigenicity. Results showed that KHM/23 exhibits similar receptor binding and antigenicity as the early clade 2.3.2.1c HPAI H5N1 strain, and it does not bind to human-like receptors. Despite showing limited zoonotic risk, the increased thermal stability and reduced pH of fusion in KHM/23 indicate a potential threat to poultry, emphasizing the need for vigilant monitoring.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Femenino , Humanos , Niño , Gripe Aviar/epidemiología , Hemaglutininas , Gripe Humana/epidemiología , Cambodia/epidemiologíaRESUMEN
Since the first human case in 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1500 human infections with a mortality rate of approximately 40%. Despite large-scale poultry vaccination regimes across China, the H7N9 AIVs continue to persist and evolve rapidly in poultry. Recently, several strains of H7N9 AIVs have been isolated and shown the ability to escape vaccine-induced immunity. To assess the zoonotic risk of the recent H7N9 AIV isolates, we rescued viruses with hemagglutinin (HA) and neuraminidase (NA) from these H7N9 AIVs and six internal segments from PR8 virus and characterized their receptor binding, pH of fusion, thermal stability, plaque morphology and in ovo virus replication. We also assessed the cross-reactivity of the viruses with human monoclonal antibodies (mAbs) against H7N9 HA and ferret antisera against H7N9 AIV candidate vaccines. The H7N9 AIVs from the early epidemic waves had dual sialic acid receptor binding characteristics, whereas the more recent H7N9 AIVs completely lost or retained only weak human sialic acid receptor binding. Compared with the H7N9 AIVs from the first epidemic wave, the 2020/21 viruses formed larger plaques in Madin-Darby canine kidney (MDCK) cells and replicated to higher titres in ovo, demonstrating increased acid stability but reduced thermal stability. Further analysis showed that these recent H7N9 AIVs had poor cross-reactivity with the human mAbs and ferret antisera, highlighting the need to update the vaccine candidates. To conclude, the newly emerged H7N9 AIVs showed characteristics of typical AIVs, posing reduced zoonotic risk but a heightened threat for poultry.
Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Perros , Humanos , Hurones , Hemaglutininas , Aves de Corral , Medición de Riesgo , Sueros Inmunes , Glicoproteínas Hemaglutininas del Virus de la InfluenzaRESUMEN
Since 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1,500 human infections and the culling of millions of poultry. Despite large-scale poultry vaccination, H7N9 AIVs continue to circulate among poultry in China and pose a threat to human health. Previously, we isolated and generated four monoclonal antibodies (mAbs) derived from humans naturally infected with H7N9 AIV. Here, we investigated the hemagglutinin (HA) epitopes of H7N9 AIV targeted by these mAbs (L3A-44, K9B-122, L4A-14, and L4B-18) using immune escape studies. Our results revealed four key antigenic epitopes at HA amino acid positions 125, 133, 149, and 217. The mutant H7N9 viruses representing escape mutations containing an alanine-to-threonine substitution at residue 125 (A125T), a glycine-to-glutamic acid substitution at residue 133 (G133E), an asparagine-to-aspartic acid substitution at residue 149 (N149D), or a leucine-to-glutamine substitution at residue 217 (L217Q) showed reduced or completely abolished cross-reactivity with the mAbs, as measured by a hemagglutination inhibition (HI) assay. We further assessed the potential risk of these mutants to humans should they emerge following mAb treatment by measuring the impact of these HA mutations on virus fitness and evasion of host adaptive immunity. Here, we showed that the L4A-14 mAb had broad neutralizing capabilities, and its escape mutant N149D had reduced viral stability and human receptor binding and could be neutralized by both postinfection and antigen-induced sera. Therefore, the L4A-14 mAb could be a therapeutic candidate for H7N9 AIV infection in humans and warrants further investigation for therapeutic applications. IMPORTANCE Avian influenza virus (AIV) H7N9 continues to circulate and evolve in birds, posing a credible threat to humans. Antiviral drugs have proven useful for the treatment of severe influenza infections in humans; however, concerns have been raised as antiviral-resistant mutants have emerged. Monoclonal antibodies (mAbs) have been studied for both prophylactic and therapeutic applications in infectious disease control and have demonstrated great potential. For example, mAb treatment has significantly reduced the risk of people developing severe disease with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition to the protection efficiency, we should also consider the potential risk of the escape mutants generated by mAb treatment to public health by assessing their viral fitness and potential to compromise host adaptive immunity. Considering these parameters, we assessed four human mAbs derived from humans naturally infected with H7N9 AIV and showed that the mAb L4A-14 displayed potential as a therapeutic candidate.
Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Animales , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/terapia , Evasión Inmune/genética , MutaciónRESUMEN
(1) Background: The aim of this study was to produce in-house ELISAs which can be used to determine SARS-CoV-2-specific antibody levels directed against the spike protein (S), the S1 subunit of S and the receptor binding domain (RBD) of S in SARS-CoV-2 vaccinated and infected humans. (2) Methods: Three in-house ELISAs were developed by using recombinant proteins of SARS-CoV-2, namely the S, S1 and RBD proteins. Specificity and sensitivity evaluations of these tests were performed using sera from SARS-CoV-2-infected (n = 70) and SARS-CoV-2-vaccinated (n = 222; CoronaVac vaccine) humans in Istanbul, Turkey. The analyses for the presence of SARS-CoV-2-specific antibodies were performed using the in-house ELISAs, a commercial ELISA (Abbott) and a commercial surrogate virus neutralization test (sVNT). We also analyzed archival human sera (n = 50) collected before the emergence of COVID-19 cases in Turkey. (3) Results: The sensitivity of the in-house S, S1 and RBD ELISAs was found to be 88.44, 90.17 and 95.38%, while the specificity was 72.27, 89.08 and 89.92%, respectively, when compared to the commercial SARS-CoV-2 antibody test kit. The area under curve (AUC) values were 0.777 for the in-house S ELISA, 0.926 for the S1 ELISA, and 0.959 for the RBD ELISA. The kappa values were 0.62, 0.79 and 0.86 for the S, S1 and RBD ELISAs, respectively. (4) Conclusions: The in-house S1 and RBD ELISAs developed in this study have acceptable performance characteristics in terms of sensitivity, specificity, AUC and kappa values. In particular, the RBD ELISA seems viable to determine SARS-CoV-2-specific antibody levels, both in infected and vaccinated people, and help mitigate SARS-CoV-2 outbreaks and spread.
RESUMEN
H9N2 avian influenza viruses (AIVs) have donated internal gene segments during the emergence of zoonotic AIVs, including H7N9. We used reverse genetics to generate A/Anhui/1/13 (H7N9) and three reassortant viruses (2:6 H7N9) which contained the hemagglutinin and neuraminidase from Anhui/13 (H7N9) and the six internal gene segments from H9N2 AIVs belonging to (i) G1 subgroup 2, (ii) G1 subgroup 3, or (iii) BJ94 lineages, enzootic in different regions throughout Asia. Infection of chickens with the 2:6 H7N9 containing G1-like H9N2 internal genes conferred attenuation in vivo, with reduced shedding and transmission to contact chickens. However, possession of BJ94-like H9N2 internal genes resulted in more rapid transmission and significantly elevated cloacal shedding compared to the parental Anhui/13 H7N9. In vitro analysis showed that the 2:6 H7N9 with BJ94-like internal genes had significantly increased replication compared to the Anhui/13 H7N9 in chicken cells. In vivo coinfection experiments followed, where chickens were coinfected with pairs of Anhui/13 H7N9 and a 2:6 H7N9 reassortant. During ensuing transmission events, the Anhui/13 H7N9 virus outcompeted 2:6 H7N9 AIVs with internal gene segments of BJ94-like or G1-like H9N2 viruses. Coinfection did lead to the emergence of novel reassortant genotypes that were transmitted to contact chickens. Some of the reassortant viruses had a greater replication in chicken and human cells compared to the progenitors. We demonstrated that the internal gene cassette determines the transmission fitness of H7N9 viruses in chickens, and the reassortment events can generate novel H7N9 genotypes with increased virulence in chickens and enhanced zoonotic potential. IMPORTANCE H9N2 avian influenza viruses (AIVs) are enzootic in poultry in different geographical regions. The internal genes of these viruses can be exchanged with other zoonotic AIVs, most notably the A/Anhui/1/2013-lineage H7N9, which can give rise to new virus genotypes with increased veterinary, economic and public health threats to both poultry and humans. We investigated the propensity of the internal genes of H9N2 viruses (G1 or BJ94) in the generation of novel reassortant H7N9 AIVs. We observed that the internal genes of H7N9 which were derivative of BJ94-like H9N2 virus have a fitness advantage compared to those from the G1-like H9N2 viruses for efficient transmission among chickens. We also observed the generation of novel reassortant viruses during chicken transmission which infected and replicated efficiently in human cells. Therefore, such emergent reassortant genotypes may pose an elevated zoonotic threat.
Asunto(s)
Coinfección , Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Pollos , Virus Reordenados/genética , Aves de Corral , FilogeniaRESUMEN
Duck enteritis virus (DEV) and Pasteurella multocida, the causative agent of duck plague and fowl cholera, are acute contagious diseases and leading causes of morbidity and mortality in duck. The NHEJ-CRISPR/Cas9-mediated gene editing strategy, accompanied with the Cre-Lox system, have been employed in the present study to show that two new sites at UL55-LORF11 and UL44-44.5 loci in the genome of the attenuated Jansen strain of DEV can be used for the stable expression of the outer membrane protein H (ompH) gene of P. multocida that could be used as a bivalent vaccine candidate with the potential of protecting ducks simultaneously against major viral and bacterial pathogens. The two recombinant viruses, DEV-OmpH-V5-UL55-LORF11 and DEV-OmpH-V5-UL44-44.5, with the insertion of ompH-V5 gene at the UL55-LORF11 and UL44-44.5 loci respectively, showed similar growth kinetics and plaque size, compared to the wildtype virus, confirming that the insertion of the foreign gene into these did not have any detrimental effects on DEV. This is the first time the CRISPR/Cas9 system has been applied to insert a highly immunogenic gene from bacteria into the DEV genome rapidly and efficiently. This approach offers an efficient way to introduce other antigens into the DEV genome for multivalent vector.
RESUMEN
Maternally derived antibodies (MDAs) are important for protecting chickens against pathogens in the neonatal stage however, they often interfere with vaccine performance. Here, we investigated the effects of MDAs on a targeted antigen delivery vaccine (TADV), which is developed by conjugating H9 subtype avian influenza virus haemagglutinin (HA) antigen to single chain fragment variable (scFv) antibodies specific for the chicken antigen presenting cell receptor CD83. Groups of 1-day-old chickens carrying high levels of MDAs (MDA++) and 14-day old chickens carrying medium levels of MDAs (MDA+) were immunised with TADV (rH9HA-CD83 scFv), untargeted rH9HA or inactivated H9N2 vaccines. Immunogenicity in these vaccinated chickens was compared using haemagglutination inhibition (HI) and enzyme-linked immunosorbent assays (ELISA). The results showed that the TADV (rH9HA-CD83 scFv) induced significantly higher levels of H9HA-specific antibody titres compared to the untargeted rH9HA and inactivated H9N2 vaccines in MDA++ and MDA+ chickens. Overall, the data demonstrates immune responses induced by TADV are not affected by the MDA in chickens.
RESUMEN
An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.
Asunto(s)
Coinfección , Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Virus Reordenados , Animales , Pollos , Coinfección/veterinaria , Hurones , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana , Filogenia , Aves de Corral , Virus Reordenados/genética , Virus Reordenados/patogenicidadRESUMEN
Protein assays show great importance in medical research and disease diagnoses. Liquid crystals (LCs), as a branch of sensitive materials, offer promising applicability in the field of biosensing. Herein, we developed an ultrasensitive biosensor for the detection of low-concentration protein molecules, employing LC-amplified optofluidic resonators. In this design, the orientation of LCs was disturbed by immobilized protein molecules through the reduction of the vertical anchoring force from the alignment layer. A biosensing platform based on the whispering-gallery mode (WGM) from the LC-amplified optofluidic resonator was developed and explored, in which the spectral wavelength shift was monitored as the sensing parameter. The microbubble structure provided a stable and reliable WGM resonator with a high Q factor for LCs. It is demonstrated that the wall thickness of the microbubble played a key role in enhancing the sensitivity of the LC-amplified WGM microcavity. It is also found that protein molecules coated on the internal surface of microbubble led to their interactions with laser beams and the orientation transition of LCs. Both effects amplified the target information and triggered a sensitive wavelength shift in WGM spectra. A detection limit of 1 fM for bovine serum albumin (BSA) was achieved to demonstrate the high-sensitivity of our sensing platform in protein assays. Compared to the detection using a conventional polarized optical microscope (POM), the sensitivity was improved by seven orders of magnitude. Furthermore, multiple types of proteins and specific biosensing were also investigated to verify the potential of LC-amplified optofluidic resonators in the biomolecular detection. Our studies indicate that LC-amplified optofluidic resonators offer a new solution for the ultrasensitive real-time biosensing and the characterization of biomolecular interactions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43074-021-00041-1.
RESUMEN
Recent studies demonstrated that domestic cats can be naturally and experimentally infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This study was performed to investigate the presence of SARS-CoV-2-specific antibodies within the domestic cat population in Istanbul, Turkey, before the coronavirus disease 2019 (COVID-19) and during the COVID-19 pandemic. Overall, from 155 cat sera analyzed, 26.45% (41/155) tested positive in the spike protein-ELISA (S-ELISA), 28.38% (44/155) in the receptor-binding domain-ELISA (RBD-ELISA), and 21.9% (34/155) in both, the S- and RBD-ELISAs. Twenty-seven of those were also positive for the presence of antibodies to feline coronavirus (FCoV). Among the 34 SARS-CoV-2-positive sera, three of those were positive on serum neutralization assay. Six of the 30 cats before COVID-19 and 28 of the 125 cats during COVID-19 were found to be seropositive. About 20% of ELISA-positive cats exhibited mainly respiratory, gastrointestinal, and renal signs and skin lesions. Hematocrit, hemoglobin, white blood cells, lymphocyte, and platelet numbers were low in about 30% of ELISA-positive cats. The number of neutrophils and monocytes were above normal values in about 20% of ELISA-positive cats. The liver enzyme alanine aminotransferase levels were high in 23.5% ELISA-positive cats. In conclusion, this is the first report describing antibodies specific to SARS-CoV-2 antigens (S and RBD) in cats in Istanbul, Turkey, indicating the risk for domestic cats to contract SARS-CoV-2 from owners and/or household members with COVID-19. This study and others show that COVID-19-positive pet owners should limit their contact with companion animals and that pets with respiratory signs should be monitored for SARS-CoV-2 infections.
RESUMEN
Improving the immunogenicity and protective efficacy of vaccines is critical to reducing disease impacts. One strategy used to enhance the immunogenicity of vaccines is the selective delivery of protective antigens to the antigen presenting cells (APCs). In this study, we have developed a targeted antigen delivery vaccine (TADV) system by recombinantly fusing the ectodomain of hemagglutinin (HA) antigen of H9N2 influenza A virus to single chain fragment variable (scFv) antibodies specific for the receptors expressed on chicken APCs; Dec205 and CD11c. Vaccination of chickens with TADV containing recombinant H9HA Foldon-Dec205 scFv or H9HA Foldon-CD11c scFv proteins elicited faster (as early as day 6 post primary vaccination) and higher anti-H9HA IgM and IgY, haemagglutination inhibition, and virus neutralisation antibodies compared to the untargeted H9HA protein. Comparatively, CD11c scFv conjugated H9HA protein showed higher immunogenic potency compared to Dec205 scFv conjugated H9HA protein. The higher immune potentiating ability of CD11c scFv was also reflected in ex-vivo chicken splenocyte stimulation assay, whereby H9HA Foldon-CD11c scFv induced higher levels of cytokines (IFNγ, IL6, IL1ß, and IL4) compared to H9HA Foldon-Dec205 scFv. Overall, the results conclude that TADV could be a better alternative to the currently available inactivated virus vaccines.
RESUMEN
Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic.
RESUMEN
The immunogenicity and protective efficacy of vaccines can be enhanced by the selective delivery of antigens to the antigen-presenting cells (APCs). In this study, H9N2 avian influenza virus haemagglutinin (HA) antigen, was targeted by fusing it to single-chain fragment variable (scFv) antibodies specific to CD83 receptor expressed on chicken APCs. We observed an increased level of IFNγ, IL6, IL1ß, IL4, and CxCLi2 mRNA upon stimulation of chicken splenocytes ex vivo by CD83 scFv targeted H9HA. In addition, CD83 scFv targeted H9HA induced higher serum haemagglutinin inhibition activity and virus neutralising antibodies compared to untargeted H9HA, with induction of antibodies as early as day 6 post primary vaccination. Furthermore, chickens vaccinated with CD83 scFv targeted H9HA showed reduced H9N2 challenge virus shedding compared to untargeted H9HA. These results suggest that targeting antigens to CD83 receptors could improve the efficacy of poultry vaccines.
RESUMEN
Cadmium (Cd) is a bioaccumulative heavy metal element with potential placental toxicity during pregnancy. Up to now, however, the precise toxic effects of Cd on human placentae, particularly as they pertain to trophoblast cells remain obscure. We therefore sought to investigate the cytotoxic effects of Cd on human extravillous trophoblast HTR-8/SVneo cells and the mechanisms involved in the processes. Results in this present study showed that CdCl2 treatment significantly suppressed cell viability and induced noticeable oxidative stress in HTR-8/SVneo cells. Further studies showed that CdCl2 treatment caused distortion of mitochondrial structure, reduction of mitochondrial membrane potential (Δψm), DNA damage and G0/G1 phase arrest. Under the same condition, CdCl2 treatment increased Bax/Bcl-2 ratios by up-regulating Bax expression and down-regulating Bcl-2 expression, and activated apoptotic executive molecule caspase-3, which irreversibly induced HTR-8/SVneo cell apoptosis. N-acetyl-l-cysteine (NAC), ROS scavenger, significantly attenuated CdCl2-caused mitochondrial injury, DNA damage, G0/G1 phase arrest and apoptosis. In addition, in vivo assay suggested that CdCl2 induced trophoblast cells apoptosis but not other cells in mice placental tissue. Taken together, these data suggest that Cd selectively triggers oxidative stress and mitochondrial injury mediated apoptosis in trophoblast cells, which might contribute to placentae impairment and placental-related disorders after Cd exposure. These findings may provide new insights to understand adverse effects of Cd on placentae during pregnancy.
Asunto(s)
Cadmio/toxicidad , Trofoblastos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Femenino , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Placenta/efectos de los fármacos , Embarazo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Trofoblastos/metabolismo , Trofoblastos/ultraestructuraRESUMEN
Influenza viruses have an error-prone polymerase complex that facilitates a mutagenic environment. Antigenic mutants swiftly arise from this environment with the capacity to persist in both humans and economically important livestock even in the face of vaccination. Furthermore, influenza viruses can adjust the antigenicity of the haemagglutinin (HA) protein, the primary influenza immunogen, using one of four molecular mechanisms. Two prominent mechanisms are: (1) enhancing binding avidity of HA toward cellular receptors to outcompete antibody binding and (2) amino acid substitutions that introduce an N-linked glycan on HA that sterically block antibody binding. In this study we investigate the impact that adsorptive mutation and N-linked glycosylation have on receptor-binding, viral fitness, and antigenicity. We utilize the H9N2 A/chicken/Pakistan/SKP-827/16 virus which naturally contains HA residue T180 that we have previously shown to be an adsorptive mutant relative to virus with T180A. We find that the addition of N-linked glycans can be beneficial or deleterious to virus replication depending on the background receptor binding avidity. We also find that in some cases, an N-linked glycan can trump the effect of an avidity enhancing substitution with respect to antigenicity. Taken together these data shed light on a potential route to the generation of a virus which is "fit" and able to overcome vaccine pressure.
Asunto(s)
Sustitución de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H9N2 del Virus de la Influenza A/fisiología , Adsorción , Animales , Células Cultivadas , Pollos , Perros , Aptitud Genética , Glicosilación , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H9N2 del Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Mutagénesis Sitio-Dirigida , Replicación ViralRESUMEN
H7N9 avian influenza viruses (AIVs) continue to evolve and remain a huge threat to human health and the poultry industry. Previously, serially passaging the H7N9 A/Anhui/1/2013 virus in the presence of homologous ferret antiserum resulted in immune escape viruses containing amino acid substitutions alanine to threonine at residues 125 (A125T) and 151 (A151T) and leucine to glutamine at residue 217 (L217Q) in the hemagglutinin (HA) protein. These HA mutations have also been found in field isolates in 2019. To investigate the potential threat of serum escape mutant viruses to humans and poultry, the impact of these HA substitutions, either individually or in combination, on receptor binding, pH of fusion, thermal stability, and virus replication were investigated. Our results showed the serum escape mutant formed large plaques in Madin-Darby canine kidney (MDCK) cells and grew robustly in vitro and in ovo They had a lower pH of fusion and increased thermal stability. Of note, the serum escape mutant completely lost the ability to bind to human-like receptor analogues. Further analysis revealed that N-linked glycosylation, as a result of A125T or A151T substitutions in HA, resulted in reduced receptor-binding avidity toward both human and avian-like receptor analogues, and the A125T+A151T mutations completely abolished human-like receptor binding. The L217Q mutation enhanced the H7N9 acid and thermal stability while the A151T mutation dramatically decreased H7N9 HA thermal stability. To conclude, H7N9 AIVs that contain A125T+A151T+L217Q mutations in the HA protein may pose a reduced pandemic risk but remain a heightened threat for poultry.IMPORTANCE Avian influenza H7N9 viruses have been causing disease outbreaks in poultry and humans. We previously determined that propagation of H7N9 virus in virus-specific antiserum gives rise to mutant viruses carrying mutations A125T+A151T+L217Q in their hemagglutinin protein, enabling the virus to overcome vaccine-induced immunity. As predicted, these immune escape mutations were also observed in the field viruses that likely emerged in the immunized or naturally exposed birds. This study demonstrates that the immune escape mutants also (i) gained greater replication ability in cultured cells and in chicken embryos as well as (ii) increased acid and thermal stability but (iii) lost preferences for binding to human-type receptor while maintaining binding for the avian-like receptor. Therefore, they potentially pose reduced pandemic risk. However, the emergent virus variants containing the indicated mutations remain a significant risk to poultry due to antigenic drift and improved fitness for poultry.
Asunto(s)
Hemaglutininas Virales/genética , Hemaglutininas Virales/inmunología , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Mutación , Pandemias , Replicación Viral/fisiología , Sustitución de Aminoácidos , Animales , Perros , Hemaglutininas Virales/química , Concentración de Iones de Hidrógeno , Gripe Aviar/virología , Células de Riñón Canino Madin Darby , Modelos Moleculares , Aves de Corral , Unión Proteica , Conformación Proteica , Estabilidad ProteicaRESUMEN
The sensitivity enhancement of the weakly tilted fiber Bragg grating (WTFBG) integrated with black phosphorus (BP) was investigated via numerical simulations and experimental demonstrations. BP nanosheets were deposited twice on the cylindrical WTFBG surface using the in situ layer-by-layer (i-LbL) deposition technique. The resonance intensity of the deepest cladding mode located around 1552 nm of WTFBG had a 9.2 dB decrease after the BP deposition process. This allows for the application of the intensity-modulated refractive index (RI) sensor. The sensing platform was implemented on the use of the BP integrated with WTFBG (BP-WTFBG). The refractometric sensing was achieved with the sensitivity enhancement of the resonance intensity modulation of the deepest cladding mode for the BP-WTFBG. The sensitivities were 137.6 dB/RIU and 75.6 dB/RIU in the RI region of 1.33-1.35 and 1.35-1.38, respectively. This platform shows great potential applications for biochemical sensing because of its highly sensitive RI sensing ability around the biochemical sensing window.
RESUMEN
BACKGROUND: Reverse genetics is used in many laboratories around the world and enables the creation of tailor-made influenza viruses with a desired genotype or phenotype. However, the process is not flawless, and difficulties remain during cloning of influenza gene segments into reverse genetics vectors (pHW2000, pHH21, pCAGGS). Reverse genetics begins with making cDNA copies of influenza gene segments and cloning them into bi-directional (pHW2000) or uni-directional plasmids (pHH21, pCAGGS) followed by transfection of the recombinant plasmid(s) to HEK-293 T or any other suitable cells which are permissive to transfection. However, the presence of internal restriction sites in the gene segments of many field isolates of avian influenza viruses makes the cloning process difficult, if employing conventional methods. Further, the genetic instability of influenza gene-containing plasmids in bacteria (especially Polymerase Basic 2 and Polymerase Basic 1 genes; PB2 and PB1) also leads to erroneous incorporation of bacterial genomic sequences into the influenza gene of interest. METHODS: Herein, we report an easy and efficient ligation and restriction enzyme independent (LREI) cloning method for cloning influenza gene segments into pHW2000 vector. The method involves amplification of megaprimers followed by PCR amplification of megaprimers using a bait plasmid, DpnI digestion and transformation. RESULTS: Hard-to-clone genes: PB2 of A/chicken/Bangladesh/23527/2014 (H9N2) and PB1 of A/chicken/Bangladesh/23527/2014 (H9N2), A/chicken/Jiangxi/02.05YGYXG023-P/2015 (H5N6) and A/Chicken/Vietnam/H7F-14-BN4-315/2014 (H9N2) were cloned into pHW2000 using our LREI method and recombinant viruses were subsequently rescued. CONCLUSION: The LREI cloning procedure represents an alternative strategy for cloning influenza gene segments which have internal restriction sites for the enzymes used in reverse genetics. Further, the problem of genetic instability in bacteria can be alleviated by growing recombinant bacterial cultures at a lower temperature. This technique can be applied to clone any influenza gene segment using universal primers, which would help in rapid generation of influenza viruses and facilitate influenza research and vaccine development.