Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
J Sep Sci ; 47(21): e70021, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39503434

RESUMEN

Thrombin was immobilized on magnetic core-shell mesoporous silica nanoparticles (Fe3O4@nSiO2@mSiO2) for the first time and used to screen enzyme inhibitors from extracts of Notopterygium incisum. The immobilized thrombin was characterized by Fourier-transform infrared spectroscopy, transmission electronic microscopy, thermal gravimetric analysis, and vibrating sample magnetometry. The results demonstrated that the immobilized thrombin possessed good thermal stability and high-temperature resistance for feasible storage and reuse. Two ligands, notopterol (1) and isoimperatorin (2) were fished out from the extract of N. incisum using the immobilized thrombin. They inhibited thrombin with IC50 values of 59.35 ± 1.420 and 107.8 ± 1.660 µM, respectively. This is the first report of thrombin-inhibitory activity associated with notopterol and isoimperatorin. Meanwhile, the inhibition mechanism of both compounds was investigated by enzyme kinetic analysis and molecular docking. The method used enables rapid screening for thrombin inhibitors from medicinal plants, providing an efficient tool for the discovery of anti-thrombotic active compounds.


Asunto(s)
Apiaceae , Enzimas Inmovilizadas , Dióxido de Silicio , Trombina , Trombina/antagonistas & inhibidores , Trombina/análisis , Dióxido de Silicio/química , Apiaceae/química , Porosidad , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/antagonistas & inhibidores , Enzimas Inmovilizadas/metabolismo , Nanopartículas/química , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/análisis , Nanopartículas de Magnetita/química , Tamaño de la Partícula , Extractos Vegetales/química , Extractos Vegetales/farmacología , Evaluación Preclínica de Medicamentos , Propiedades de Superficie , Furocumarinas
2.
Fitoterapia ; 179: 106241, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362503

RESUMEN

Artemisia plants are well-known for their abundant sesquiterpene compounds, which encompass various structural types and exhibit a range of biological activities. In this study, a systematic investigation of Artemisia atrovirens revealed the presence of germacrane-type sesquiterpenes for the first time. This included the discovery of 10 new compounds and three known analogues, among which were two rare dimeric germacrane-type compounds. Their structures were fully characterized through a comprehensive analysis involving MS, IR, 1D- and 2D-NMR spectroscopic data, single crystal X-ray diffraction, density functional theory (DFT) NMR calculations, and time-dependent DFT electronic circular dichroism (TDDFT ECD) calculations. Furthermore, all isolated compounds were evaluated for their anti-inflammatory activity in LPS-stimulated RAW 264.7 murine macrophages. Compound 10 demonstrated a potent inhibitory effect on NO production, with an IC50 value of 4.01 ± 0.09 µM. This study highlights the diverse chemical repertoire of Artemisia species and underscores their potential in drug discovery and development.

3.
Adv Sci (Weinh) ; : e2407984, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316295

RESUMEN

Metal-organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid-liquid phase separation, particle attachment-coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography. Lithium-sulfur battery tests demonstrate the nanocage-Co NP structure's exceptional capacity and cycling stability, attributed to Co NP catalytic effects due to its small size, uniform dispersion, and nanocage confinement. The findings propose a holistic framework for MOF crystallization understanding and Co NP tunability through ultrafast sintering, promising advancements in materials science and informing future MOF synthesis strategies and applications.

4.
Adv Healthc Mater ; : e2400016, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285803

RESUMEN

Topology and bioactive molecules are crucial for stimulating cellular and tissue functions. To regulate the chronic wound microenvironment, mono-assembly technology is employed to fabricate a radial egg white hydrogel loaded with lyophilized adipose tissue-extracellular vesicles (radial EWH@L-EVs). The radial architecture not only significantly modified the gene expression of functional cells, but also achieved directional and controlled release kinetics of L-EVs. Through the synergy of topographical and inherent bioactive cues, radial EWH@L-EVs effectively reduced intracellular oxidative stress and promoted the polarization of macrophages toward an anti-inflammatory phenotype during the inflammatory phase. Afterward, radial EWH@L-EVs facilitated the centripetal migration and proliferation of fibroblasts and endothelial cells as the wound transitioned to the proliferative phase. During the latter remodeling phase, radial EWH@L-EVs accelerated the regeneration of granulation tissue, angiogenesis, and collagen deposition, thereby promoting the reorganization chronic wound. Compared with the gold standard collagen scaffold, radial EWH@L-EVs actively accommodated the microenvironment via various functions throughout all stages of diabetic wound healing. This can be attributed to the orientation of topological structures and bioactive molecules, which should be considered of utmost importance in tissue engineering.

5.
J Tissue Eng ; 15: 20417314241265202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071896

RESUMEN

Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.

6.
Zhongguo Gu Shang ; 37(6): 6095-15, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38910385

RESUMEN

OBJECTIVE: To explore clinical effect of vancomycin calcium sulfate combined with internal fixation on calcaneal beak-like fracture secondary to calcaneal osteomyelitis caused by diabetic foot. METHODS: From April 2018 to October 2021, a retrospective analysis was performed on 5 patients with calcaneal bone osteomyelitis secondary to diabetic foot, including 2 males and 3 females, aged from 48 to 60 years old;diabetes course ranged from 5 to 13 years;the courses of diabetic foot disease ranged from 18 to 52 days;5 patients were grade Ⅲ according to Wagner classification. All patients were treated with debridement, vancomycin bone cement implantation, negative pressure aspiration at stageⅠ, vancomycin calcium sulfate and internal fixation at stageⅡfor calcaneal beak-like fracture. Surgical incision and fracture healing time were recorded, and the recurrence of osteomyelitis was observed. American Orthopedic Foot Andankle Society (AOFAS) score and exudation at 12 months after operation were evaluated. RESULTS: Five patients were successfully completed operation without lower extremity vascular occlusion, and were followed up for 16 to 36 months. The wound healing time after internal fixation ranged from 16 to 26 days, and healing time of fractures ranged from 16 to 27 weeks. AOFAS score ranged from 65 to 91 at 12 months after operation, and 2 patients got excellent result, 2 good and 1 fair. Among them, 1 patient with skin ulcer on the back of foot caused by scalding at 5 months after operation (non-complication), was recovered after treatment;the wound leakage complication occurred in 2 patients, and were recovered after dressing change. No osteomyelitis or fracture occurred in all patients. CONCLUSION: Vancomycin calcium sulfate with internal fixation in treating calcaneal osteomyelitis secondary to calcaneal osteomyelitis caused by diabetic foot could not only control infection, but also promote fracture healing, and obtain good clinical results.


Asunto(s)
Calcáneo , Pie Diabético , Fijación Interna de Fracturas , Osteomielitis , Humanos , Masculino , Persona de Mediana Edad , Femenino , Osteomielitis/cirugía , Osteomielitis/tratamiento farmacológico , Osteomielitis/etiología , Pie Diabético/cirugía , Calcáneo/lesiones , Calcáneo/cirugía , Estudios Retrospectivos , Fijación Interna de Fracturas/métodos , Fracturas Óseas/complicaciones , Fracturas Óseas/cirugía
7.
Fitoterapia ; 177: 106008, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38844142

RESUMEN

The first systematic investigation of germacrane-type sesquiterpenes from Pilea cavaleriei Levl. subsp. cavaleriei was conducted. Eleven undescribed germacrane analogues named cavalinols A-K were identified. Their planar structures were determined by extensive analysis of 1D and 2D NMR spectroscopic data, and the absolute configurations were further determined by X-ray single crystal diffraction, Mosher method, and time dependent density functional theory (TDDFT) electron circular dichroism (ECD) calculation, with the aid from DFT NMR calculation and NOESY experiment. Except for the common 10-memebered ring, ten new compounds contained a p-coumaroyl sidechain connected to C-8 of the nucleus skeleton. All the isolated compounds were screened for anti-inflammatory activity in LPS stimulated RAW 264.7 cells, and compounds 5 and 6 showed moderate activity.


Asunto(s)
Antiinflamatorios , Fitoquímicos , Sesquiterpenos de Germacrano , Ratones , Células RAW 264.7 , Animales , Estructura Molecular , Sesquiterpenos de Germacrano/aislamiento & purificación , Sesquiterpenos de Germacrano/farmacología , Sesquiterpenos de Germacrano/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , China , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Sesquiterpenos/química
8.
J Tissue Eng ; 15: 20417314241253290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818510

RESUMEN

The rising prevalence of diabetes has underscored concerns surrounding diabetic wounds and their potential to induce disability. The intricate healing mechanisms of diabetic wounds are multifaceted, influenced by ambient microenvironment, including prolonged hyperglycemia, severe infection, inflammation, elevated levels of reactive oxygen species (ROS), ischemia, impaired vascularization, and altered wound physicochemical properties. In recent years, hydrogels have emerged as promising candidates for diabetic wound treatment owing to their exceptional biocompatibility and resemblance to the extracellular matrix (ECM) through a three-dimensional (3D) porous network. This review will first summarize the microenvironment alterations occurring in the diabetic wounds, aiming to provide a comprehensive understanding of its pathogenesis, then a comprehensive classification of recently developed hydrogels will be presented, encompassing properties such as hypoglycemic effects, anti-inflammatory capabilities, antibacterial attributes, ROS scavenging abilities, promotion of angiogenesis, pH responsiveness, and more. The primary objective is to offer a valuable reference for repairing diabetic wounds based on their unique microenvironment. Moreover, this paper outlines potential avenues for future advancements in hydrogel dressings to facilitate and expedite the healing process of diabetic wounds.

9.
FASEB J ; 38(5): e23520, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430369

RESUMEN

Fat grafting is a promising technique for correcting soft tissue abnormalities, but oil cyst formation and graft fibrosis frequently impede the therapeutic benefit of fat grafting. The lipolysis of released oil droplets after grafting may make the inflammation and fibrosis in the grafts worse; therefore, by regulating adipose triglyceride lipase (ATGL) via Atglistatin (ATG) and Forskolin (FSK), we investigated the impact of lipolysis on fat grafts in this study. After being removed from the mice and chopped into small pieces, the subcutaneous fat from wild-type C57BL/6J mice was placed in three different solutions for two hours: serum-free cell culture medium, culture medium+FSK (50 µM), and culture medium+ATG (100 µM). Following centrifugation to remove water and free oil droplets, 0.3 mL of the fat particles per mouse was subcutaneously injected into the back of mice. Additionally, the subcutaneous fat grafting area was immediately injected with PBS (control group), ATG (30 mg/kg), and FSK (15 mg/kg) following fat transplantation. Detailed cellular events after grafting were investigated by histological staining, real-time polymerase chain reaction, immunohistochemistry/immunofluorescent staining, and quantification. Two weeks after grafting, grafts treated with ATG showed lower expression of ATGL and decreased mRNA levels of TNFα and IL-6. In contrast, grafts treated with ATG showed elevated expression levels of IL-4 and IL-13 compared to the control grafts. In addition, fewer apoptotic cells and oil cysts were observed in ATG grafts. Meanwhile, a higher CD206+/CD68+ ratio of macrophages and more CD31+ vascular endothelial cells existed in the 2-month ATG grafts. In comparison to the control, ATG treatment improved the volume retention of grafts, and decreased graft fibrosis and oil cyst formation. By preventing oil droplet lipolysis, pharmacological suppression of ATGL shielded adipocytes from lipotoxicity following grafting. Additionally, ATG ameliorated the apoptosis and inflammation brought on by adipocyte death and oil droplet lipolysis in grafted fat. These all indicate that lipolysis inhibition improved transplanted fat survival and decreased the development of oil cysts and graft fibrosis, offering a potential postoperative pharmacological intervention for bettering fat grafting.


Asunto(s)
Tejido Adiposo , Quistes , Animales , Ratones , Lipólisis , Células Endoteliales , Ratones Endogámicos C57BL , Fibrosis , Inflamación
10.
J Tissue Eng ; 15: 20417314241230633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361535

RESUMEN

The tailorable properties of synthetic polyethylene glycol (PEG) hydrogels make them an attractive substrate for human organoid assembly. Here, we formed human neural organoids from iPSC-derived progenitor cells in two distinct formats: (i) cells seeded on a Matrigel surface; and (ii) cells seeded on a synthetic PEG hydrogel surface. Tissue assembly on synthetic PEG hydrogels resulted in three dimensional (3D) planar neural organoids with greater neuronal diversity, greater expression of neurovascular and neuroinflammatory genes, and reduced variability when compared with tissues assembled upon Matrigel. Further, our 3D human tissue assembly approach occurred in an open cell culture format and created a tissue that was sufficiently translucent to allow for continuous imaging. Planar neural organoids formed on PEG hydrogels also showed higher expression of neural, vascular, and neuroinflammatory genes when compared to traditional brain organoids grown in Matrigel suspensions. Further, planar neural organoids contained functional microglia that responded to pro-inflammatory stimuli, and were responsive to anti-inflammatory drugs. These results demonstrate that the PEG hydrogel neural organoids can be used as a physiologically relevant in vitro model of neuro-inflammation.

11.
J Adv Res ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38218581

RESUMEN

INTRODUCTION: Managing large chronic wounds presents significant challenges because of inadequate donor sites, infection, and lack of structural support from dermal substitutes. Hydrogels are extensively used in various forms to promote chronic wound healing and provide a three-dimensional spatial structure, through growth factors or cell transport. OBJECTIVES: We present a novel multicenter regenerative model that is capable of regenerating and merging simultaneously to form a complete layer of skin. This method significantly reduces wound healing time compared to the traditional centripetal healing model. We believe that our model can improve clinical outcomes and pave the way for further research into regenerative medicine. METHODS: We prepared a novel multi-island double-layer microneedle (MDMN) using gelatin-methacryloylchitosan (GelMA-CS). The MDMN was loaded with keratinocytes (KCs) and dermal fibroblasts (FBs). Our aim in this study was to explore the therapeutic potential of MDMN in a total skin excision model. RESULTS: The MDMN model replicated the layered structure of full-thickness skin and facilitated tissue regeneration and healing via dual omni-bearing. Multi-island regeneration centres accomplished horizontal multicentric regeneration, while epidermal and dermal cells migrated synchronously from each location. This produced a healing area approximately 4.7 times greater than that of the conventional scratch tests. The MDMN model exhibited excellent antibacterial properties, attributed to the chitosan layer. During wound healing in diabetic mice, the MDMN achieved earlier epidermal coverage and faster wound healing through multi-island regeneration centres and the omnidirectional regeneration mode. The MDMN group displayed an accelerated wound healing rate upon arrival at the destination (0.96 % ± 0.58 % vs. 4.61 % ± 0.32 %). Additionally, the MDMN group exhibited superior vascularization and orderly collagen deposition. CONCLUSION: The present study presents a novel skin regeneration model using microneedles as carriers of autologous keratinocytes and dermal fibroblasts, which allows for omni-directional, multi-center, and full-thickness skin regeneration.

12.
J Phys Condens Matter ; 36(9)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37983903

RESUMEN

High pressure can change the valence electron arrangement of the elements, and it can be as a new method for the emergence of unexpected new compounds. In this paper, the Ca-Ar compounds at 0-200 GPa are systematically investigated by using CALYPSO structure prediction methods combined with first principles calculations. The study of the Ca-Ar system can provide theoretical guidance for the exploration of new structures of inert elemental Ar compounds under high pressure. A stable structure:P63/mmc-CaAr and six metastable structures:Rm-CaAr2,P4/mmm-CaAr2,Pm1-CaAr3,P4/mmm-CaAr3,P21/m-CaAr4andPm1-CaAr5were obtained. Our calculations show that the only stable phaseP63/mmc-CaAr can be synthesized at high pressure of 90 GPa. All the structures are ionic compounds of metallic nature, and surprisingly all Ar atoms attract electrons and act as an oxidant under high pressure conditions. The calculation results ofab initiomolecular dynamics show thatP63/mmc-CaAr compound maintains significant thermodynamic stability at high temperatures up to 1000 K. The high-pressure structures and electronic behaviors of the Ca-Ar system are expected to expand the understanding of the high-pressure chemical reactivity of compounds containing inert elements, and provide important theoretical support for the search of novel anomalous alkaline-earth metal inert element compounds.

13.
Nat Biotechnol ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974010

RESUMEN

Central norepinephrine (NE) neurons, located mainly in the locus coeruleus (LC), are implicated in diverse psychiatric and neurodegenerative diseases and are an emerging target for drug discovery. To facilitate their study, we developed a method to generate 40-60% human LC-NE neurons from human pluripotent stem cells. The approach depends on our identification of ACTIVIN A in regulating LC-NE transcription factors in dorsal rhombomere 1 (r1) progenitors. In vitro generated human LC-NE neurons display extensive axonal arborization; release and uptake NE; and exhibit pacemaker activity, calcium oscillation and chemoreceptor activity in response to CO2. Single-nucleus RNA sequencing (snRNA-seq) analysis at multiple timepoints confirmed NE cell identity and revealed the differentiation trajectory from hindbrain progenitors to NE neurons via an ASCL1-expressing precursor stage. LC-NE neurons engineered with an NE sensor reliably reported extracellular levels of NE. The availability of functional human LC-NE neurons enables investigation of their roles in psychiatric and neurodegenerative diseases and provides a tool for therapeutics development.

14.
Neuron ; 111(24): 3988-4005.e11, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37820724

RESUMEN

Fragile X messenger ribonucleoprotein 1 protein (FMRP) deficiency leads to fragile X syndrome (FXS), an autism spectrum disorder. The role of FMRP in prenatal human brain development remains unclear. Here, we show that FMRP is important for human and macaque prenatal brain development. Both FMRP-deficient neurons in human fetal cortical slices and FXS patient stem cell-derived neurons exhibit mitochondrial dysfunctions and hyperexcitability. Using multiomics analyses, we have identified both FMRP-bound mRNAs and FMRP-interacting proteins in human neurons and unveiled a previously unknown role of FMRP in regulating essential genes during human prenatal development. We demonstrate that FMRP interaction with CNOT1 maintains the levels of receptor for activated C kinase 1 (RACK1), a species-specific FMRP target. Genetic reduction of RACK1 leads to both mitochondrial dysfunctions and hyperexcitability, resembling FXS neurons. Finally, enhancing mitochondrial functions rescues deficits of FMRP-deficient cortical neurons during prenatal development, demonstrating targeting mitochondrial dysfunction as a potential treatment.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Enfermedades Mitocondriales , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Trastorno del Espectro Autista/metabolismo , Neuronas/metabolismo , Neurogénesis , Enfermedades Mitocondriales/metabolismo , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Proteínas de Neoplasias/metabolismo , Factores de Transcripción/metabolismo
15.
Front Chem ; 11: 1274424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876852

RESUMEN

Sensitive detection of procalcitonin (PCT) in serum is crucial for the timely diagnosis and treatment of rheumatoid arthritis. In this work, an electrochemiluminescence (ECL) detection platform is developed based on in-situ growth of Au nanoparticles (AuNPs) in nanochannels and an analyte-gated detection signal, which can realize ECL determination of PCT with high sensitivity. Vertically ordered mesoporous silica films with amine groups and uniform nanochannel array (NH2-VMSF) is easily grown on the supporting indium tin oxide (ITO) electrode through electrochemical assisted self-assembly method (EASA). Anchored by the amino groups, AuNPs were grown in-situ within the nanochannels to catalyze the generation of reactive oxygen species (ROS) and amplify the ECL signal of luminol. An immuno-recognitive interface is constructed on the outer surface of NH2-VMSF, through covalent immobilization of PCT antibodies. In the presence of PCT, the immunocomplex will hinder the diffusion of luminol and co-reactants, leading to a gating effect and decreased ECL signals. Based on this principle, the immunosensor can detect PCT in the range from 10 pg/mL to 100 ng mL-1 with a limit of detection (LOD) of 7 pg mL-1. The constructed immunosensor can also be used for detecting PCT in serum. The constructed sensor has advantages of simple fabrication and sensitive detection, demonstrating great potential in real sample analysis.

17.
Nanoscale ; 15(33): 13718-13727, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37577754

RESUMEN

In situ liquid phase transmission electron microscopy (TEM) and three-dimensional electron tomography are powerful tools for investigating the growth mechanism of MOFs and understanding the factors that influence their particle morphology. However, their combined application to the study of MOF etching dynamics is limited due to the challenges of the technique such as sample preparation, limited field of view, low electron density, and data analysis complexity. In this research, we present a study employing in situ liquid phase TEM to investigate the etching mechanism of colloidal zeolitic imidazolate framework (ZIF) nanoparticles. The etching process involves two distinct stages, resulting in the development of porous structures as well as partially and fully hollow morphologies. The etching process is induced by exposure to an acid solution, and both in situ and ex situ experiments demonstrate that the outer layer etches faster leading to overall volume shrinking (stage I) while the inner layer etches faster giving a hollow morphology (stage II), although both the outer layer and inner layer have been etched in the whole process. 3D electron tomography was used to quantify the properties of the hollow structures which show that the ZIF-67 crystal etching rate is larger than that of the ZIF-8 crystal at the same pH value. This study provides valuable insights into MOF particle morphology control and can lead to the development of novel MOF-based materials with tailored properties for various applications.

18.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37398253

RESUMEN

The dorsolateral prefrontal cortex (dlPFC) is an evolutionarily derived cortical region in primates critical for high-level cognitive functions and implicated in various neuropsychiatric disorders. The cells that compose the dlPFC, especially excitatory and inhibitory neurons, undergo extensive maturation throughout midfetal and late-fetal development, during which critical neurodevelopmental events, such as circuit assembly and electrophysiological maturation of neurons, occur. Despite the relevance of neuronal maturation in several neurodevelopmental and psychiatric disorders, the molecular mechanisms underlying this process remain largely unknown. Here, we performed an integrated Patch-seq and single-nucleus multiomic analysis of the rhesus macaque dlPFC to identify genes governing neuronal maturation from midfetal to late-fetal development. Our multimodal analysis identified gene pathways and regulatory networks important for the maturation of distinct neuronal populations, including upper-layer intratelencephalicprojecting neurons. We identified genes underlying the maturation of specific electrophysiological properties of these neurons. Furthermore, gene knockdown in organotypic slices revealed that RAPGEF4 regulates the maturation of resting membrane potential and inward sodium current. Using this strategy, we also found that the knockdown of CHD8, a high-confidence autism spectrum disorder risk gene, in human slices led to deficits in neuronal maturation, via the downstream downregulation of several key genes, including RAPGEF4. Our study revealed novel regulators of neuronal maturation during a critical period of prefrontal development in primates and implicated such regulators in molecular processes underlying autism.

19.
Nat Commun ; 14(1): 3801, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365192

RESUMEN

Fragile X messenger ribonucleoprotein 1 protein (FMRP) binds many mRNA targets in the brain. The contribution of these targets to fragile X syndrome (FXS) and related autism spectrum disorder (ASD) remains unclear. Here, we show that FMRP deficiency leads to elevated microtubule-associated protein 1B (MAP1B) in developing human and non-human primate cortical neurons. Targeted MAP1B gene activation in healthy human neurons or MAP1B gene triplication in ASD patient-derived neurons inhibit morphological and physiological maturation. Activation of Map1b in adult male mouse prefrontal cortex excitatory neurons impairs social behaviors. We show that elevated MAP1B sequesters components of autophagy and reduces autophagosome formation. Both MAP1B knockdown and autophagy activation rescue deficits of both ASD and FXS patients' neurons and FMRP-deficient neurons in ex vivo human brain tissue. Our study demonstrates conserved FMRP regulation of MAP1B in primate neurons and establishes a causal link between MAP1B elevation and deficits of FXS and ASD.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Adulto , Humanos , Animales , Ratones , Masculino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Trastorno del Espectro Autista/genética , Conducta Social , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Autofagia/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
20.
Mater Today Bio ; 20: 100687, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37334187

RESUMEN

Chronic wounds have always been considered as "gordian knots" in medicine, in which hypoxia plays a key role in blocking healing. To address this challenge, although tissue reoxygenation therapy based on hyperbaric oxygen therapy (HBOT) has been performed clinically for several years, the bench to bedside still urges the evolution of oxygen-loading and -releasing strategies with explicit benefits and consistent outcome. The combination of various oxygen carriers with biomaterials has gained momentum as an emerging therapeutic strategy in this field, exhibiting considerable application potential. This review gives an overview of the essential relationship between hypoxia and delayed wound healing. Further, detailed characteristics, preparation methods and applications of various oxygen-releasing biomaterials (ORBMs) will be elaborated, including hemoglobin, perfluorocarbon, peroxide, and oxygen-generating microorganisms, those biomaterials are applied to load, release or generate a vast of oxygen to relieve the hypoxemia and bring the subsequent cascade effect. The pioneering papers regarding to the ORBMs practice are presented and trends toward hybrid and more precise manipulation are summarized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...