Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(14): 6231-6238, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38529948

RESUMEN

As potential low-cost alternatives of traditional bulk HgCdTe crystals, HgTe colloidal quantum dots (CQDs) synthesized through reactions between HgCl2 and trioctylphosphine-telluride in hot oleylamine have shown promising performances in mid-wave infrared photodetectors. Tetrapodic or tetrahedral HgTe CQDs have been obtained by tuning the reaction conditions such as temperature, reaction time, concentrations, and ratios of the two precursors. However, the principles governing the growth dynamics and the mechanism behind the transitions between tetrapodic and tetrahedral HgTe CQDs have not been sufficiently understood. In this work, synthesis of HgTe CQDs through bilateral injection is introduced to study the growth mechanism. It suggests that tetrahedral HgTe CQDs usually result from the breaks of tetrapodic HgTe CQDs after their legs grow thick enough. The fundamental factor determining whether the growth makes their legs longer or thicker is the effective concentration of the Te precursor during the growth, rather than temperature, Hg-rich environment, or reactivity of precursors. A chemical model is proposed to illustrate the principles governing the growth dynamics, which provides valuable guidelines for tuning the material properties of HgTe CQDs according to the needs of applications.

2.
Nanoscale ; 16(2): 941, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38059724

RESUMEN

Correction for 'Elaborating the interplay between the detecting unit and emitting unit in infrared quantum dot up-conversion photodetectors' by Qiulei Xu et al., Nanoscale, 2023, 15, 8197-8203, https://doi.org/10.1039/D3NR01237A.

3.
J Phys Chem Lett ; 14(18): 4252-4258, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37126605

RESUMEN

PbS quantum dot light-emitting diodes (QLEDs) emitting around 1550 nm promise important applications in optical communications. However, due to insufficient suppression of surface traps for large-size PbS quantum dots (QDs), their performance under large driving current density was not satisfactory. In this work, octanethiol surfactant was added into a PbS QD solution and adsorbed onto the dot surface. As a result, the surface traps and the continuous oxidation of the unprotected (100) facets in PbS QDs were greatly suppressed. Therefore, the PbS QDs with octanethiol doubled their photoluminescence efficiency and showed outstanding stability. The PbS-based QLEDs with benchmark device structure showed a breakthrough high radiance of 18.3 W sr-1 m-2 with >2000 mA/cm2 driving current density. The efficient passivation of surface traps with octanethiol surfactant and the suppressed coupling between excitons and surface states under large working current were the main reasons for achieving the breakthrough high radiance.

4.
Nanoscale ; 15(18): 8197-8203, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37097127

RESUMEN

The quantum dot up-conversion device combines an infrared photodetector (PD) and a visible quantum-dot light-emitting diode (QLED) to directly convert infrared targets to visible images. However, large efficiency loss is usually induced by the integration of the detecting unit and the emitting unit. One of the important reasons is the performances of the PD and QLED units restraining each other. We regulated the equilibrium between infrared absorption and visible emission by changing the thicknesses of infrared active layers in up-conversion devices. A good balance could be achieved between the absorption of 980 nm incident light and the out-coupling of the 634 nm emission when the active layer thickness is 140 nm, leading to the best performance of the up-conversion device. As more photogenerated carriers are produced with the increase of infrared illumination intensity, the external quantum efficiency (EQE) of the QLED unit in the up-conversion device remains little changed. This suggests the limited amount of photogenerated holes in the PD unit does not limit the EQE of the QLED unit. However, a PD unit with a high ratio of photogenerated holes trapped near the interconnection decreased the EQE in the QLED unit. This work provides new insights into the interplay between the PD and QLED units in up-conversion devices, which is crucial for their further improvements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...