Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(13): 15304-15310, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585084

RESUMEN

ZnGa2O4 sensing films were prepared using an RF magnetron sputtering system and connected to a commercial metal oxide semiconductor field-effect transistor (MOSFET) as the extended-gate field-effect transistor (EGFET) to detect pH values. Experimental parameters were adjusted by varying the oxygen flow rate in the process chamber to produce ZnGa2O4 sensing films with different oxygen ratios. These films were then treated in a furnace tube at an annealing temperature of 700 °C. The sensitivity and linearity of the constant current mode and the constant voltage mode were measured and analyzed in the pH range of 2-12. Under the deposition conditions with an oxygen ratio of 6%, the sensitivity reached 23.14 mV/pH and 33.49 µA/pH, with corresponding linearity values of 92.1 and 96.15%, respectively. Finally, the sensing performance of the ZnGa2O4 EGFET pH sensor with and without annealing processes was analyzed and compared.

2.
ACS Omega ; 9(1): 1077-1083, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222652

RESUMEN

With the growing concern over the adverse effects of environmental pollution on human health, the combination of environmentally friendly and nontoxic biomaterials with metal oxide semiconductor materials for electronic devices has emerged as a prominent trend in current research. In this study, we utilized 150 mg apple biotemplates to assist in the hydrothermal synthesis of ZnO nanospheres. It successfully achieved high sensitivity for detecting 35 and 350 ppb NO2 at room temperature, with responses of 13.74 and 132.44%, respectively. Simultaneously, the 5-cycle repeatability and multiple-gas selectivity exhibited significant improvements. The ZnO nanospheres demonstrated enhanced sensing performance compared to pure ZnO nanorods, which is attributed to the following mechanisms: reason I, the modified surface morphology increasing the surface-to-volume ratio; reason II, an increase in oxygen vacancies, leading to reduced crystallinity and a higher electron concentration; reason III, incorporation of carbon elements on the nanostructure surface to increase active sites. The novel gas sensor assisted by the apple pectin biotemplate offers a promising solution for NO2 gas detection, featuring low operating temperatures, low concentrations, and high response sensitivity.

3.
RSC Adv ; 13(8): 5437-5443, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36793296

RESUMEN

The growth conditions of the AlGaN barrier in AlGaN/AlGaN deep ultra-violet (DUV) multiple quantum wells (MQWs) have crucial influences on the light output power of DUV light-emitting diodes (LEDs). The reduction of the AlGaN barrier growth rate improved the qualities of AlGaN/AlGaN MQWs, such as surface roughness and defects. The light output power enhancement could reach 83% when the AlGaN barrier growth rate was reduced from 900 nm h-1 to 200 nm h-1. In addition to the light output power enhancement, lowering the AlGaN barrier growth rate altered the far-field emission patterns of the DUV LEDs and increased the degree of polarization in the DUV LEDs. The enhanced transverse electric polarized emission indicates that the strain in AlGaN/AlGaN MQWs was modified by lowering the AlGaN barrier growth rate.

4.
ACS Omega ; 8(4): 3705-3712, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743031

RESUMEN

Different oxygen partial-pressure MgGa2O4-resistive RAMs (RRAMs) are fabricated to investigate the resistive switching behaviors. The X-ray photoelectron spectroscopy results, set voltage, reset voltage, cycling endurance, and retention time are drawn for comparison. With the increasing oxygen ratio gas flow, the resistive switching characteristics of MgGa2O4 RRAM are drastically elevated by changing the fabrication conditions of the RS layer. Moreover, we portray a filament model to explain the most likely mechanism associated with the generation and rupture of conductive filaments composed of oxygen vacancies. The formation of the interfacial layer (AlO x ) and the participation of the Joule heating effect are included to explain the highly distributed high-resistance state (HRS). The high randomness among switching cycles for memory application should be prevented, but it is suitable for the physical unclonable function. The relationship between HRS and the next time set voltage shows a strong correlation, and the conduction mechanisms of the low-resistance state (LRS) and HRS correspond to ohmic conduction and space charge-limited conduction, respectively. Meanwhile, the RRAM undergoes 10,000 s retention tests, and the two resistance states can be distinguished without obvious alternation or degradation. A favorable cycling endurance and retention time achieved by optimizing the fabrication parameters of Al/MgGa2O4/Pt RRAM have the potential for nonvolatile memristors and information security applications.

5.
ACS Omega ; 7(17): 15027-15036, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35557702

RESUMEN

AlGaN and GaN sidewalls were turned into Al x Ga2-x O3 and Ga2O3, respectively, by thermal oxidation to improve the optoelectrical characteristics of deep ultraviolet (DUV) light-emitting diodes (LEDs). The thermally oxidized Ga2O3 is a single crystal with nanosized voids homogenously distributed inside the layer. Two oxidized Al x Ga2-x O3 layers were observed on the sidewall of the AlGaN layer in transmission electron microscopy images. The first oxidized Al x Ga2-x O3 layer is a single crystal, while the second oxidized Al x Ga2-xO3 layer is a single crystal with numerous nanosized voids inside. The composition of Al in the first oxidized Al x Ga2-x O3 layer is higher than that in the second one. The thermal oxidation at high temperature degrades the quality of the p-GaN layer and increases the forward voltage from 8.18 to 11.36 V. The thermally oxidized Al x Ga2-x O3 sidewall greatly enhances the light extraction efficiency of the lateral light of the DUV LEDs by combined mechanisms of holey structure, graded refractive index, high transparency, and tensile stress. Consequently, the light output power of the DUV LEDs increases from 0.69 to 0.88 mW by introducing a 420 nm thick Al x Ga2-x O3 sidewall oxidized at 900 °C, in which the enhancement of light output power can reach 27.5%.

6.
Nanomaterials (Basel) ; 12(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269247

RESUMEN

In this study, facile synthesis, characterization, and stability tests of highly luminescent Zn-doped CsPbBr3 perovskite nanocrystals (NCs) were demonstrated. The doping procedure was performed via partial replacement of PbBr2 with ZnBr2 in the precursor solution. Via Zn-doping, the photoluminescence quantum yield (PLQY) of the NCs was increased from 41.3% to 82.9%, with a blue-shifted peak at 503.7 nm and narrower spectral width of 18.7 nm which was consistent with the highly uniform size distribution of NCs observed from the TEM image. In the water-resistance stability test, the doped NCs exhibited an extended period-over four days until complete decomposition, under the harsh circumstances of hexane-ethanol-water mixing solution. The Zn-doped NC film maintained its 94% photoluminescence (PL) intensity after undergoing a heating/cooling cycle, surpassing the un-doped NC film with only 67% PL remaining. Based on our demonstrations, the in-situ Zn-doping procedure for the synthesis of CsPbBr3 NCs could be a promising strategy toward robust and PL-efficient nanomaterial to pave the way for realizing practical optoelectronic devices.

7.
ACS Omega ; 6(16): 10691-10697, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-34056222

RESUMEN

The stability of a resistive random-access memory (RRAM) device over long-term use has been widely acknowledged as a pertinent concern. For investigating the stability of RRAM devices, a stacked In x Ga1-x O structure is designed as its switching layer in this study. Each stacked structure in the switching layer, formed via sputtering, consists of varying contents of gallium, which is a suppressor of oxygen vacancies; thus, the oxygen vacancies are well controlled in each layer. When a stacked structure with layers of different contents is formed, the original gradients of concentration of oxygen vacancies and mobility influence the set and reset processes. With the stacked structure, an average set voltage of 0.76 V, an average reset voltage of -0.66 V, a coefficient of variation of set voltage of 0.34, and a coefficient of variation of reset voltage of 0.18 are obtained. Additionally, under DC sweeps, the stacked RRAM demonstrates a high operating life of more than 4000 cycles. In conclusion, the performance and stability of the RRAM are enhanced herein by adjusting the concentration of oxygen vacancies via different compositions of elements.

8.
J Nanosci Nanotechnol ; 20(3): 1704-1708, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31492333

RESUMEN

In this study, the optical and electrical properties of a zinc tin oxide (ZTO) thin-film transistor (TFT) were investigated. The TFT was fabricated using ZTO as the active layer, which was deposited by a radio frequency magnetron sputtering system, to form an ultraviolet (UV) photodetector. The device has a threshold voltage of 0.48 V, field-effect mobility of 1.47 cm²/Vs in the saturation region, on/off drain current ratio of 2×106, and subthreshold swing of 0.45 V/decade in a dark environment. Moreover, as a UV photodetector, the device has a long photoresponse time, responsivity of 0.329 A/W, and rejection ratio of 3.19×104 at a gate voltage of -15 V under illumination of wavelength 300 nm.

9.
J Nanosci Nanotechnol ; 18(7): 4930-4934, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442676

RESUMEN

Zinc-tin-oxide thin-film transistors were prepared by radio frequency magnetron co-sputtering, while an identical zinc-tin-oxide thin film was deposited simultaneously on a clear glass substrate to facilitate measurements of the optical properties. When we adjusted the deposition power of ZnO and SnO2, the bandgap of the amorphous thin film was dominated by the deposition power of SnO2. Since the thin-film transistor has obvious absorption in the ultraviolet region owing to the wide bandgap, the drain current increases with the generation of electron-hole pairs. As part of these investigations, a zinc-tin-oxide thin-film transistor has been fabricated that appears to be very promising for ultraviolet applications.

10.
J Nanosci Nanotechnol ; 18(5): 3518-3522, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442860

RESUMEN

In this study, zinc indium tin oxide thin-film transistors (ZITO TFTs) were fabricated by the radio frequency (RF) sputtering deposition method. Adding indium cations to ZnO by co-sputtering allows the development of ZITO TFTs with improved performance. Material characterization revealed that ZITO TFTs have a threshold voltage of 0.9 V, a subthreshold swing of 0.294 V/decade, a field-effect mobility of 5.32 cm2/Vs, and an on-off ratio of 4.7 × 105. Furthermore, an investigation of the photosensitivity of the fabricated devices was conducted by an illumination test. The responsivity of ZITO TFTs was 26 mA/W, with 330-nm illumination and a gate bias of -1 V. The UV-to-visible rejection ratio for ZITO TFTs was 2706. ZITO TFTs were observed to have greater UV light sensitivity than that of ZnO TFTs. We believe that these results suggest a significant step toward achieving high photosensitivity. In addition, the ZITO semiconductor system could be a promising candidate for use in high performance transparent TFTs, as well as further sensing applications.

11.
J Nanosci Nanotechnol ; 18(4): 2493-2497, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442918

RESUMEN

This paper presents the electrical characteristics of doping nitrogen in an amorphous InGaZnO thin film transistor. The IGZO:N film, which acted as a channel layer, was deposited using RF sputtering with a nitrogen and argon gas mixture at room temperature. The optimized parameters of the IGZO:N/IGZO TFT are as follows: threshold voltage is 0.5 V, field effect mobility is 14.34 cm2V-1S-1. The on/off current ratio is 106 and subthreshold swing is 1.48 V/decade. The positive gate bias stress stability of InGaZnO doping with nitrogen shows improvement compared to doping with oxygen.

12.
RSC Adv ; 9(1): 87-90, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-35521590

RESUMEN

An indium tungsten oxide (IWO) ultraviolet (UV) photodetector was fabricated with radio frequency magnetron sputtering. IWO thin films were deposited on devices under various oxygen partial pressure ambiences. With higher oxygen flow ratio, the oxygen vacancies were filled up, reducing the carrier concentration. Lowering the number of defects, such as oxygen vacancies, was effective for optimizing device performance. The on-off current ratio of an IWO UV-A photodetector at 10% oxygen partial pressure could reach 4.56 × 104, with a photoresponsivity of 1.9 × 10-2 A W-1, as well as a rejection ratio of 2.68 × 104 at a voltage bias of 10 V.

13.
RSC Adv ; 8(32): 17622-17628, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35542070

RESUMEN

We discuss the fabrication procedure and device characteristics of ITO/Zn2TiO4/Pt resistive random-access memory (RRAM) at room temperature. Four different resistive states were obtained by applying different current compliances, all of which showed good retention characteristics with no obvious degradation and were individually distinguished after 10 000 s at a read voltage of 100 mV. The multilevel memory effect can be attributed to the combination of the radial growth of filaments and the formation of conductive filaments when applying different compliance current values during the set process. The set and reset voltages of the ITO/Zn2TiO4/Pt RRAM device were maintained within ±1 V. The device performed well at low operation voltages. The mechanisms of multilevel resistive switching characteristics were investigated to illustrate the multilevel carrier conduction phenomenon associated with Zn2TiO4-based RRAM devices. In this study, our group illustrated the application of zinc titanate (Zn2TiO4) in non-volatile memories for the first time.

14.
Materials (Basel) ; 10(2)2017 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-28772487

RESUMEN

We investigated the electrical and optoelectronic properties of a magnesium zinc oxide thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated device demonstrated a threshold voltage of 3.1 V, on-off current ratio of 105, subthreshold swing of 0.8 V/decade, and mobility of 5 cm²/V·s in a dark environment. As a UV photodetector, the responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 105 at a gate bias of -5 V under 290 nm illumination.

15.
Nanomaterials (Basel) ; 7(7)2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28672868

RESUMEN

Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of -0.9 V, mobility of 0.884 cm²/Vs, on-off ratio of 5.5 × 105, and subthreshold swing of 0.41 V/dec.

16.
ACS Appl Mater Interfaces ; 9(17): 14935-14944, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28414425

RESUMEN

UV- and visible-light photoresponse was achieved via p-type K-doped ZnO nanowires and nanosheets that were hydrothermally synthesized on an n-ZnO/glass substrate and peppered with Au nanoparticles. The K content of the p-ZnO nanostructures was 0.36 atom %. The UV- and visible-light photoresponse of the p-ZnO nanostructures/n-ZnO sample was roughly 2 times higher than that of the ZnO nanowires. The Au nanoparticles of various densities and diameter sizes were deposited on the p-ZnO nanostructures/n-ZnO samples by a simple UV photochemical reaction method yielding a tunable and enhanced UV- and visible-light photoresponse. The maximum UV and visible photoresponse of the Au nanoparticle sample was obtained when the diameter size of the Au nanoparticle was approximately 5-35 nm. On the basis of the localized surface plasmon resonance effect, the UV, blue, and green photocurrent/dark current ratios of Au nanoparticle/p-ZnO nanostructures/n-ZnO are ∼1165, ∼94.6, and ∼9.7, respectively.

17.
Sensors (Basel) ; 16(12)2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27983694

RESUMEN

A metal-semiconductor-metal ultraviolet photodetector has been fabricated with a radiofrequency (RF)-sputtered InGaO thin film. Results for the devices fabricated under different oxygen partial pressure are here in discussed. Under low oxygen partial pressure, the devices work in the photoconductive mode because of the large number of subgap states. Therefore, the devices exhibit internal gain. These defects in the films result in slow switching times and lower photo/dark current ratios. A higher flow ratio of oxygen during the sputtering process can effectively restrain the oxygen vacancies in the film. The responsivity of the photodetector fabricated under an oxygen flow ratio of 20% can reach 0.31 A/W. The rise time and decay time can reach 21 s and 27 s, respectively.

18.
Sensors (Basel) ; 13(3): 3941-50, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23519350

RESUMEN

Two-dimensional (2D) ZnO nanowalls were prepared on a glass substrate by a low-temperature thermal evaporation method, in which the fabrication process did not use a metal catalyst or the pre-deposition of a ZnO seed layer on the substrate. The nanowalls were characterized for their surface morphology, and the structural and optical properties were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescence (PL). The fabricated ZnO nanowalls have many advantages, such as low growth temperature and good crystal quality, while being fast, low cost, and easy to fabricate. Methane sensor measurements of the ZnO nanowalls show a high sensitivity to methane gas, and rapid response and recovery times. These unique characteristics are attributed to the high surface-to-volume ratio of the ZnO nanowalls. Thus, the ZnO nanowall methane sensor is a potential gas sensor candidate owing to its good performance.


Asunto(s)
Gases/aislamiento & purificación , Metano/aislamiento & purificación , Óxido de Zinc/química , Catálisis , Microscopía Electrónica de Transmisión , Nanocables/química
19.
J Nanosci Nanotechnol ; 10(2): 1135-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20352768

RESUMEN

ZnO nanowire-based ultraviolet (UV) photodetector was proposed and fabricated by depositing interdigitated Au film on vertically well aligned ZnO nanowires. It was found that the deposited Au film form good ohmic contact with the underneath ZnO nanowires. Upon UV irradiation, it was found that the detector current was increased by more than 2.5 times. It was also found that the corresponding time constant for turn-on transient was tau(on) = 3.125 ms while that for turn-off transient was tau(off) = 36.92 ms.

20.
Nanotechnology ; 20(36): 365603, 2009 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-19687549

RESUMEN

Vertically aligned large-area p-Cu(2)O/n-AZO (Al-doped ZnO) radial heterojunction nanowire arrays were synthesized on silicon without using catalysts in thermal chemical vapor deposition followed by e-beam evaporation. Scanning electron microscopy and high-resolution transmission electron microscopy results show that poly-crystalline Cu(2)O nano-shells with thicknesses around 10 nm conformably formed on the entire periphery of pre-grown Al:ZnO single-crystalline nanowires. The Al doping concentration in the Al:ZnO nanowires with diameters around 50 nm were determined to be around 1.19 at.% by electron energy loss spectroscopy. Room-temperature photoluminescence spectra show that the broad green bands of pristine ZnO nanowires were eliminated by capping with Cu(2)O nano-shells. The current-voltage (I-V) measurements show that the p-Cu(2)O/n-AZO nanodiodes have well-defined current rectifying behavior. This paper provides a simple method to fabricate superior p-n radial nanowire arrays for developing nano-pixel optoelectronic devices and solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...