Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 679
Filtrar
1.
Anal Chem ; 96(37): 14980-14988, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39235216

RESUMEN

PD-L1-positive extracellular vesicles (PD-L1+ EVs) play a pivotal role as predictive biomarkers in cancer immunotherapy. These vesicles, originating from immune cells (I-PD-L1+ EVs) and tumor cells (T-PD-L1+ EVs), hold distinct clinical predictive values, emphasizing the importance of deeply differentiating the PD-L1+ EV subtypes for effective liquid biopsy analyses. However, current methods such as ELISA lack the ability to differentiate their cellular sources. In this study, a novel step-wedge microfluidic chip that combines magnetic microsphere separation with single-layer fluorescence counting is developed. This chip integrates magnetic microspheres modified with anti-PD-L1 antibodies and fluorescent nanoparticles targeting EpCAM (tumor cell marker) or CD45 (immunocyte marker), enabling simultaneous quantification and sensitive analysis of PD-L1+ EV subpopulations in oral squamous cell carcinoma (OSCC) patients' saliva without background interference. Analysis results indicate reduced levels of I-PD-L1+ EVs in OSCC patients compared to those in healthy individuals, with varying levels of heterogeneous PD-L1+ EVs observed among different patient groups. During immunotherapy, responders exhibit decreased levels of total PD-L1+ EVs and T-PD-L1+ EVs, accompanied by reduced levels of I-PD-L1+ EVs. Conversely, nonresponders show increased levels of I-PD-L1+ EVs. Utilizing the step-wedge microfluidic chip allows for simultaneous detection of PD-L1+ EV subtypes, facilitating the precise prediction of oral cancer immunotherapy outcomes.


Asunto(s)
Antígeno B7-H1 , Vesículas Extracelulares , Inmunoterapia , Dispositivos Laboratorio en un Chip , Neoplasias de la Boca , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/análisis , Neoplasias de la Boca/terapia , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Saliva/química , Saliva/metabolismo
2.
Heliyon ; 10(17): e37171, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286175

RESUMEN

Uracil-DNA glycosylase (UDG) plays a pivotal role in the base repair system. Through bioinformatics, we found that the expression of the UDG enzyme in many cancer cells is increased, and its high expression is not conducive to the prognosis of lung cancer patients. The development of analytical techniques for the quantification of UDG activity and the identification of UDG inhibitors is of paramount importance. We found that when the T base in the G4 loop region mutated to uracil, the G4 structure was not disrupted and still retained the characteristics of a G4 structure (emitting strong fluorescence after binding with ThT (Thioflavin T). Inspired by this phenomenon, we developed a detection method for UDG and its inhibitors utilizing a single DNA strand engineered to form a G-quadruplex structure, containing uracil residues within the loop region, designated as G4-dU. The inclusion of uracil-DNA glycosylase (UDG) in the assay environment induces the removal of uracil, resulting in the formation of apurinic sites (AP) within the G4-dU sequence. Subsequent thermal denaturation leads to strand cleavage at AP sites, precluding the reformation of the G-quadruplex configuration and abrogating fluorescence emission. The detection process in this study can be completed in only 30 min to 1 h, offers a straightforward, expedient, and efficacious modality for assessing UDG activity and UDG inhibitor potency, thereby facilitating the discovery of novel therapeutic agents for cancer treatment.

3.
Clin Exp Med ; 24(1): 221, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287841

RESUMEN

The aim of this study is to investigate salivary gland involvement in patients with anti-centromere antibody (ACA)-positive primary Sjögren's syndrome (pSS). We retrospectively evaluated 134 patients with pSS. Patients were divided into four groups based on the results of ACA and SSA antibodies. We compared clinical manifestations, laboratory findings, salivary gland shear wave elastography, minor salivary gland biopsy results, and EULAR Sjögren's syndrome disease activity index (ESSDAI) scores among the four groups. A total of 134 patients were classified as having pSS and divided into three groups based on serum ACA and anti-SSA antibody status: ACA + SSA + , ACA + SSA-, ACA-SSA + , and seronegative. The primary analysis focused on comparing the clinical and SWE findings between the ACA + SSA + and ACA + SSA- groups. In the double-positive group, SWE revealed fewer minor salivary glands along with higher mean (Emean) and maximum (Emax) values of Young's moduli than those in the ACA-negative group. Patients in the positive group had increased occurrence of Raynaud's phenomenon, liver involvement, and a higher incidence of malignancy (P < 0.05). ACA-positive pSS patients are a subgroup with different clinical manifestations and more pronounced involvement of the minor salivary glands. SWE findings revealed that ACA-positive patients exhibit significantly higher mean and maximum stiffness values compared to ACA-negative patients, indicating more extensive glandular fibrosis and involvement. These results underscore the utility of SWE as a valuable method for evaluating salivary gland pathology and supporting the stratification of pSS patients.


Asunto(s)
Anticuerpos Antinucleares , Diagnóstico por Imagen de Elasticidad , Glándulas Salivales Menores , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/diagnóstico por imagen , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/patología , Estudios Retrospectivos , Femenino , Diagnóstico por Imagen de Elasticidad/métodos , Persona de Mediana Edad , Masculino , Glándulas Salivales Menores/patología , Glándulas Salivales Menores/diagnóstico por imagen , Anticuerpos Antinucleares/sangre , Adulto , Anciano , Centrómero/inmunología , Biopsia
4.
Transgenic Res ; 33(4): 195-210, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39105946

RESUMEN

Ethylene response factors have been shown to be involved in the effects of plant developmental processes and to regulate stress tolerance. The aim of this study was to recognize the regulatory mechanisms of ethylene response factors on tobacco plant height. In this study, a gene-edited mutant (ERF10-KO) and wild type (WT) were utilized as experimental materials. Transcriptome and metabolome analyses were used to investigate the regulatory mechanism of NtERF10 gene editing on plant height in tobacco. Here, through the analysis of differentially expressed genes (DEGs), 2051 genes were upregulated and 1965 genes were downregulated. We characterized the different ERF10-KO and WT plant heights and identified key genes for photosynthesis, the plant hormone signal transduction pathway and the terpene biosynthesis pathway. NtERF10 was found to affect the growth and development of tobacco by regulating the expression levels of the PSAA, PSBA, GLY17 and GGP3 genes. Amino acid metabolism was analyzed by combining analyses of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). In addition, we found that members of the bHLH, NAC, MYB, and WRKY transcription factor families have vital roles in regulating plant height. This study not only provides important insights into the positive regulation of the ethylene response factor NtERF10 on plant height during plant growth and development but also provides new research ideas for tobacco molecular breeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Factores de Transcripción , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Etilenos/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transcriptoma
5.
Front Genet ; 15: 1422908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156960

RESUMEN

Glycogen Storage Disease Type VII (GSD VII) is a rare glycogen metabolism disorder resulting from mutations in the PFKM gene, inherited in an autosomal recessive manner. It is characterized by exercise intolerance, muscle cramps, myoglobinuria, compensatory hemolysis, and later onset de novo myasthenia and mild myopathy, contributing to its clinical heterogeneity and diagnostic challenges. Here, we report a rare case of a 17-year-old Chinese woman exhibiting substantial muscle weakness and compensated hemolysis. Muscle biopsies showed glycogen deposition, and blood tests showed hyperuricemia and significantly elevated creatine kinase. Whole genome sequencing (WGS) and whole exome sequencing (WES) identified two compound heterozygous mutations in the PFKM (NM_000289.6) gene: c.626G>A and c.1376G>A in exons 7 and 15, respectively. According to the clinical presentation, diagnostic examination, and WES results, the patient was finally diagnosed with GSDVII. The discovery of these two new PFKM mutations expands the genetic spectrum, and understanding the clinical manifestations of these mutations is critical to preventing diagnostic delays and timely intervention and treatment.

6.
Front Surg ; 11: 1387038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092154

RESUMEN

Objectives: Iatrogenic ureteral injury is a severe surgical complication, with a highest incidence of 1.5% in gynecological surgeries. The purpose of this report is to document our initial experience with using methylene blue (MB) to label the ureter in gynecological laparoscopic surgeries and to explore its effectiveness and safety. This is also a novel description of simultaneously visualizing ureteral MB fluorescence and sentinel lymph nodes (SLN's) Indocyanine Green (ICG) fluorescence using the same camera. Methods: This study included patients undergoing gynecological laparoscopic surgeries, with the same surgeon performing all cases. During the early stages of each surgery, rapid intravenous infusion of MB was administered. For cases requiring SLN imaging, we also injected ICG solution into the cervix. Assessment of the included cases was conducted both intraoperatively and postoperatively. The group that had MB fluorescence (Group A) was compared to a control group that did not have it (Group B). Results: A total of 25 patients (Group A) received MB during surgery, demonstrating 45 ureters clearly, with an imaging success rate of 90%. Continuous and clearer fluorescence imaging was achieved in cases with ureteral hydronephrosis. In most patients, ureteral fluorescence was visible 15-20 min after intravenous infusion of MB, and 64% still exhibited fluorescence at the end of the surgery. In patients who had both ICG and MB, dual fluorescence imaging was achieved clearly. Among the included cases, there were no iatrogenic ureteral injuries (0%), which we observed to be lower than in patients who did not receive MB (1.3%). The rate of adverse events was similar in both groups. Conclusion: Using MB fluorescence is an effective and safe method of visualizing the ureters during gynecological surgeries, and can diminish iatrogenic ureteral injury without increased associated adverse events. It therefore may offer promising prospects for clinical application.

7.
J Ovarian Res ; 17(1): 176, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210397

RESUMEN

BACKGROUND: Ovarian cancer (OC) is the predominant primary tumor in the human reproductive system. Abnormal sialylation has a significant impact on tumor development, metastasis, immune evasion, angiogenesis, and treatment resistance. B4GALT5, a gene associated with sialylation, plays a crucial role in ovarian cancer, and may potentially affect clinicopathological characteristics and prognosis. METHODS: We conducted a comprehensive search across TIMER, GEPIA2, GeneMANIA, and Metascape to obtain transcription profiling data of ovarian cancer from The Cancer Genome Atlas (TCGA). The expression of B4GALT5 was test by immunohistochemistry. To investigate the impact of B4GALT5 on growth and programmed cell death in OC cells, we performed transwell assays and western blots. RESULTS: The presence of B4GALT5 was strongly associated with an unfavorable outcome in OC. B4GALT5 significantly promoted the proliferation of OC cells. Upon analyzing gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), it was discovered that B4GALT5 played a crucial role in the extracellular matrix, particularly in collagen-containing structures, and exhibited correlations with ECM-receptor interactions, transcriptional dysregulation in cancer, as well as the interleukin-1 receptor signaling pathway. Furthermore, there is a clear link between B4GALT5 and the tumor immune microenvironment in OC. Moreover, B4GALT5 exhibits favorable expression levels across various types of cancers, including CHOL, KIRC, STAD and UCES. CONCLUSION: In conclusion, it is widely believed that B4GALT5 plays a pivotal role in the growth and progression of OC, with its heightened expression serving as an indicator of unfavorable outcomes. Moreover, B4GALT5 actively participates in shaping the cancer immune microenvironment within OC. This investigation has the potential to contribute significantly to a deeper understanding of the substantial involvement of B4GALT5 in human malignancies, particularly OCs.


Asunto(s)
Neoplasias Ováricas , Microambiente Tumoral , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular
8.
Curr Biol ; 34(17): 3996-4006.e11, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39146937

RESUMEN

The Yellow River Delta played a vital role in the development of the Neolithic civilization of China. However, the population history of this region from the Neolithic transitions to the present remains poorly understood due to the lack of ancient human genomes. This especially holds for key Neolithic transitions and tumultuous turnovers of dynastic history. Here, we report genome-wide data from 69 individuals dating to 5,410-1,345 years before present (BP) at 0.008 to 2.49× coverages, along with 325 present-day individuals collected from 16 cities across Shandong. During the Middle to Late Dawenkou period, we observed a significant influx of ancestry from Neolithic Yellow River farmers in central China and some southern Chinese ancestry that mixed with local hunter-gatherers in Shandong. The genetic heritage of the Shandong Longshan people was found to be most closely linked to the Dawenkou culture. During the Shang to Zhou Dynasties, there was evidence of genetic admixture of local Longshan populations with migrants from the Central Plain. After the Qin to Han Dynasties, the genetic composition of the region began to resemble that of modern Shandong populations. Our genetic findings suggest that the middle Yellow River Basin farmers played a role in shaping the genetic affinity of neighboring populations in northern China during the Middle to Late Neolithic period. Additionally, our findings indicate that the genetic diversity in the Shandong region during the Zhou Dynasty may be linked with their complex ethnicities.


Asunto(s)
Genoma Humano , Humanos , China , Historia Antigua , ADN Antiguo/análisis , Migración Humana/historia , Ríos , Genética de Población , Arqueología , Variación Genética , Genómica
9.
Org Lett ; 26(35): 7291-7296, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39172514

RESUMEN

A novel photoredox/nickel dual catalytic intermolecular alkylarylation of vinylarenes with tertiary and secondary alkyltrifluoroborates and aryl bromides is described, which affords 1,1-diarylalkane frameworks that are found in various natural products as well as functionalized molecules in good to excellent yield and regioselectivity through a radical relay process. Notably, this redox-neutral reaction could proceed efficiently with good tolerance of various substrates, including a great diversity of commercially available (hetero)aryl bromides, alkyltrifluoroborates, and vinylarenes.

10.
Science ; 385(6706): 295-300, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39024431

RESUMEN

The industrial catalysts utilized for propane dehydrogenation (PDH) to propylene, an important alternative to petroleum-based cracking processes, either use expensive metals or metal oxides that are environmentally unbenign. We report that a typically less-active oxide, titanium oxide (TiO2), can be combined with earth-abundant metallic nickel (Ni) to form an unconventional Ni@TiOx catalyst for efficient PDH. The catalyst demonstrates a 94% propylene selectivity at 40% propane conversion and superior stability under industrially relevant conditions. Complete encapsulation of Ni nanoparticles was allowed at elevated temperatures (>550°C). A mechanistic study suggested that the defective TiOx overlayer consisting of tetracoordinated Ti sites with oxygen vacancies is catalytically active. Subsurface metallic Ni acts as an electronic promoter to accelerate carbon-hydrogen bond activation and hydrogen (H2) desorption on the TiOx overlayer.

11.
World J Gastrointest Surg ; 16(6): 1601-1608, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38983328

RESUMEN

BACKGROUND: This study was designed to investigate the clinical efficacy and safety of Gamma Knife® combined with transarterial chemoembolization (TACE) and immunotherapy in the treatment of primary liver cancer. AIM: To investigate the clinical efficacy and safety of Gamma Knife® combined with TACE and immune-targeted therapy in the treatment of primary liver cancer. METHODS: Clinical data from 51 patients with primary liver cancer admitted to our hospital between May 2018 and October 2022 were retrospectively collected. All patients underwent Gamma Knife® treatment combined with TACE and immunotherapy. The clinical efficacy, changes in liver function, overall survival (OS), and progression-free survival (PFS) of patients with different treatment responses were evaluated, and adverse reactions were recorded. RESULTS: The last follow-up for this study was conducted on October 31, 2023. Clinical evaluation of the 51 patients with primary liver cancer revealed a partial response (PR) in 27 patients, accounting for 52.94% (27/51); stable disease (SD) in 16 patients, accounting for 31.37% (16/51); and progressive disease (PD) in 8 patients, accounting for 15.69% (8/51). The objective response rate was 52.94%, and the disease control rate was 84.31%. Alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alpha-fetoprotein isoform levels decreased after treatment compared with pretreatment (all P = 0.000). The median OS was 26 months [95% confidence interval (95%CI): 19.946-32.054] in the PR group and 19 months (95%CI: 14.156-23.125) in the SD + PD group, with a statistically significant difference (P = 0.015). The median PFS was 20 months (95%CI: 18.441-34.559) in the PR group and 12 months (95%CI: 8.745-13.425) in the SD + PD group, with a statistically significant difference (P = 0.002). Common adverse reactions during treatment included nausea and vomiting (39.22%), thrombocytopenia (27.45%), and leukopenia (25.49%), with no treatment-related deaths reported. CONCLUSION: Gamma Knife® combined with TACE and immune-targeted therapy is safe and effective in the treatment of primary liver cancer and has a good effect on improving the clinical benefit rate and liver function of patients.

12.
Chem Sci ; 15(26): 10135-10145, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966363

RESUMEN

The dual catalysis strategy is an efficient and powerful tool to fulfill the stereodivergent synthesis of stereoisomeric products from the same set of starting materials. Great attention has been given to the construction of chiral compounds with two contiguous stereocenters. However, the synthesis of two remote noncontiguous stereocenters is more challenging and is less developed, despite the high demand for synthetic tactics. We herein developed an unprecedented example of the stereodivergent preparation of synthetically useful and biologically important chiral ζ-hydroxy amino ester derivatives containing remote 1,6-noncontiguous stereocenters and a unique ß,γ-unsaturation moiety. This cascade dehydrogenation/1,6-Michael addition/hydrogenation protocol between readily-available ketoimine esters and racemic branched dienyl carbinols was rationally realized with bimetallic copper/ruthenium relay catalysis. The key features of the process were atom economy, step economy, and redox-neutrality. All four stereoisomers of chiral ζ-hydroxy amino ester derivatives were easily achieved by the orthogonal permutations of a chiral copper catalyst and chiral ruthenium catalyst. Importantly, a much more challenging stereodivergent synthesis of all eight stereoisomers of chiral peptide products containing three remote stereocenters was accomplished with excellent results through the cooperation of two chiral catalyst pairs and substrate enantiomers.

13.
J Inflamm Res ; 17: 5039-5056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081871

RESUMEN

Objective: Osteoarthritis (OA) is a common degenerative disease worldwide. While curcumin has shown therapeutic effects on OA, its mechanism remains unknown. This study aimed to investigate the molecular mechanism of curcumin in treating OA through network pharmacology and both in vivo and in vitro experiments. Methods: Curcumin-related targets were obtained using the HERB and DrugBank databases. GeneCards and DisGeNET were used to build a target database for OA. The STRING database was employed to construct protein-protein interaction networks and analyze related protein interactions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology enrichment analyses of core targets were performed using Metascape. In addition, Autodock software was utilized for molecular docking validation of curcumin and disease targets. Further validation of the main findings was conducted through in vitro and in vivo experiments. In the in vitro experiments, an inflammation model was constructed through nitric oxide donor (SNP) stimulation of chondrocytes. Subsequently, the regulatory effects of curcumin on core targets and signaling pathways were validated using Western blotting and immunofluorescence staining techniques. In the in vivo experiments, an OA model was established by performing medial meniscectomy on male Sprague-Dawley rats. The therapeutic effects were evaluated using enzyme-linked immunosorbent assays, histologic staining, and micro-computed tomography (micro-CT) techniques. Results: Core targets of curcumin relevant to OA therapy included tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6, matrix metalloproteinase 9 (MMP-9), B-cell lymphoma 2 (BCL-2), and caspase-3. The major biological processes involved oxidative stress and apoptotic processes, among others. The p38 mitogen-activated protein kinase (p38/MAPK) pathway was identified as the most likely pathway involved. In vitro experiments showed that curcumin significantly reduced oxidative stress levels, inhibited the expression of inflammatory factors IL-6 and Cyclooxygenase-2 (COX-2) and downregulated the expression of MMP-9 and MMP-1. In addition, curcumin was found to regulate the expression of BCL-2 and caspase-3 through the p38/MAPK pathway, inhibiting chondrocyte apoptosis. In vivo animal experiments demonstrated that curcumin significantly reduced the expression of OA-related factors (IL-1, IL-6, and TNF-α). Histological analysis and micro-CT results revealed that curcumin treatment significantly increased cartilage thickness, improved cartilage morphology, structure, and function, inhibited cartilage degradation, and enhanced the resorption of subchondral bone in the knee joints of rats with OA. Conclusion: Curcumin regulates oxidative stress and maintains mitochondrial function, thereby protecting chondrocyte guard. In addition, curcumin attenuates the inflammatory response of chondrocytes by inhibiting the phosphorylation of P38MAPK, slowing down the breakdown of the extrachondral matrix while preventing apoptosis of chondrocytes. Additionally curcumin attenuated cartilage degradation and bone damage while helping to boost bone density.

16.
Adv Mater ; 36(35): e2405238, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923661

RESUMEN

The ongoing tide of spent lithium-ion batteries (LIBs) urgently calls for high-value output in efficient recycling. Recently, direct regeneration has emerged as a novel recycling strategy but fails to repair the irreversible morphology and structure damage of the highly degraded polycrystalline layered oxide materials. Here, this work carries out a solid-state upcycling study for the severely cracked LiNi1-x-yCoxMnyO2 cathodes. The specific single-crystallization process during calcination is investigated and the surface rock salt phase is recognized as the intrinsic obstacle to the crystal growth of the degraded cathodes due to sluggish diffusion in the heterogeneous grain boundary. Accordingly, this work revives the fatigue rock salt phase by restoring a layered surface and successfully reshapes severely broken cathodes into the high-performance single-crystalline particles. Benefiting from morphological and structural integrity, the upcycled single-crystalline cathode materials exhibit an enhanced capacity retention rate of 93.5% after 150 cycles at 1C compared with 61.7% of the regenerated polycrystalline materials. The performance is also beyond that of the commercial cathodes even under a high cut-off voltage (4.5 V) or high operating temperature (45 °C). This work provides scientific insights for the upcycling of the highly degraded cathodes in spent LIBs.

17.
Immun Inflamm Dis ; 12(6): e1319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888448

RESUMEN

OBJECTIVE: Bone mesenchymal stem cells (BMSCs) have been tentatively applied in the treatment of glucocorticoid-induced osteoporosis (GIOP) and systemic lupus erythematosus (SLE). However, the effects of BMSCs on osteoporosis within the context of glucocorticoid (GC) application in SLE remain unclear. Our aim was to explore the roles of BMSCs and different doses of GC interventions on osteoporosis in SLE murine models. METHODS: MRL/MpJ-Faslpr mice were divided into eight groups with BMSC treatment and different dose of GC intervention. Three-dimensional imaging analysis and hematoxylin and eosin (H&E) staining were performed to observe morphological changes. The concentrations of osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) in serum were measured by enzyme-linked immunosorbent assay (ELISA). The subpopulation of B cells and T cells in bone marrows and spleens were analyzed by flow cytometry. Serum cytokines and chemokines were assessed using Luminex magnetic bead technology. RESULTS: BMSCs ameliorated osteoporosis in murine SLE models by enhancing bone mass, improving bone structure, and promoting bone formation through increased bone mineral content and optimization of trabecular morphology. BMSC and GC treatments reduced the number of B cells in bone marrows, but the effect was not significant in spleens. BMSCs significantly promoted the expression of IL-10 while reducing IL-18. Moreover, BMSCs exert immunomodulatory effects by reducing Th17 expression and rectifying the Th17/Treg imbalance. CONCLUSION: BMSCs effectively alleviate osteoporosis induced by SLE itself, as well as osteoporosis resulting from SLE combined with various doses of GC therapy. The therapeutic effects of BMSCs appear to be mediated by their influence on bone marrow B cells, T cell subsets, and associated cytokines. High-dose GC treatment exerts a potent anti-inflammatory effect but may hinder the immunotherapeutic potential of BMSCs. Our research may offer valuable guidance to clinicians regarding the use of BMSC treatment in SLE and provide insights into the judicious use of GCs in clinical practice.


Asunto(s)
Modelos Animales de Enfermedad , Glucocorticoides , Lupus Eritematoso Sistémico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoporosis , Animales , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/terapia , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Ratones , Osteoporosis/etiología , Osteoporosis/tratamiento farmacológico , Osteoporosis/terapia , Glucocorticoides/administración & dosificación , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Femenino , Ratones Endogámicos MRL lpr , Citocinas/metabolismo
18.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928488

RESUMEN

The oxidative esterification of aldehydes under mild conditions remains a significant challenge. This study introduces a unique defective UiO-66 to achieve gold nanoclusters (AuNCs) for efficient aldehyde oxidation under mild conditions. The construction and characterization of these materials are thoroughly investigated by techniques of XRD, SEM and TEM images, FT-IR, Raman, and XPS spectrum, emphasizing the unique microporous in defective UiO-66 are conducive to the fabrication of AuNCs. The catalytic performance of the prepared materials in aldehyde oxidation reactions is systematically evaluated, demonstrating the remarkable efficiency of dispersed Au@UiO-66-25 with high-content (9.09 wt%) Au-loading and ultra-small size (~2.7 nm). Moreover, mechanistic insights into the catalytic process under mild conditions (70 °C for 1 h) are provided, elucidating the determination of defective UiO-66 in the confined fabrication of AuNCs and subsequent furfural adsorption, which underlie the principles governing the observed enhancements. This study establishes the groundwork for the synthesis of highly dispersed and catalytically active metal nanoparticles using defective MOFs as a platform, advancing the catalytic esterification reaction of furfural to the next level.


Asunto(s)
Aldehídos , Oro , Nanopartículas del Metal , Oxidación-Reducción , Oro/química , Nanopartículas del Metal/química , Aldehídos/química , Catálisis , Estructuras Metalorgánicas/química , Porosidad , Esterificación , Espectroscopía Infrarroja por Transformada de Fourier
19.
Fundam Res ; 4(1): 77-85, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38933830

RESUMEN

The development of stereodivergent synthetic methods to access all four stereoisomers of biologically important α-fluoro γ-butyrolactones containing vicinal stereocenters is of great importance and poses a formidable challenge owing to ring strain and steric hindrance. Herein, a novel asymmetric [3+2] annulation of α-fluoro α-azaaryl acetates with vinylethylene carbonate was successfully developed through Cu/Ir-catalyzed cascade allylic alkylation/lactonization, affording a variety of enantioenriched α-fluoro γ-butyrolactones bearing vicinal stereogenic centers with high reaction efficiency and excellent levels of both stereoselectivity and regioselectivity (up to 98% yield, generally >20:1 dr and >99% ee). Notably, all four stereoisomers of these pharmaceutically valuable molecules could be accessed individually via simple permutations of two enantiomeric catalysts. In addition, other azaaryl acetates bearing α-methyl, α-chlorine or α-phenyl group were tolerated well in this transformation. Reaction mechanistic investigations were conducted to explore the process of this bimetallic catalysis based on the results of reaction intermediates, isotopic labelling experiments, and kinetic studies.

20.
Angew Chem Int Ed Engl ; 63(32): e202406557, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38798154

RESUMEN

The surge in lithium-ion batteries has heightened concerns regarding metal resource depletion and the environmental impact of spent batteries. Battery recycling has become paramount globally, but conventional techniques, while effective at extracting transition metals like cobalt and nickel from cathodes, often overlook widely used spent LiFePO4 due to its abundant and low-cost iron content. Direct regeneration, a promising approach for restoring deteriorated cathodes, is hindered by practicality and cost issues despite successful methods like solid-state sintering. Hence, a smart prelithiation separator based on surface-engineered sacrificial lithium agents is proposed. Benefiting from the synergistic anionic and cationic redox, the prelithiation separator can intelligently release or intake active lithium via voltage regulation. The staged lithium replenishment strategy was implemented, successfully restoring spent LiFePO4's capacity to 163.7 mAh g-1 and a doubled life. Simultaneously, the separator can absorb excess active lithium up to approximately 600 mAh g-1 below 2.5 V to prevent over-lithiation of the cathode This innovative, straightforward, and cost-effective strategy paves the way for the direct regeneration of spent batteries, expanding the possibilities in the realm of lithium-ion battery recycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...