Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
World J Clin Cases ; 11(32): 7833-7851, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38073678

RESUMEN

BACKGROUND: The Nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor has attracted much attention in the context of neurological diseases. However, none of the studies have systematically clarified this field's research hotspots and evolution rules. AIM: To investigate the research hotspots, evolution patterns, and future research trends in this field in recent years. METHODS: We conducted a comprehensive literature search in the Web of Science Core Collection database using the following methods: (((((TS=(NFE2 L2)) OR TS=(Nfe2 L2 protein, mouse)) OR TS=(NF-E2-Related Factor 2)) OR TS=(NRF2)) OR TS=(NFE2L2)) OR TS=(Nuclear factor erythroid2-related factor 2) AND (((((((TS=(neurological diseases)) OR TS=(neurological disorder)) OR TS=(brain disorder)) OR TS=(brain injury)) OR TS=(central nervous system disease)) OR TS=(CNS disease)) OR TS=(central nervous system disorder)) OR TS=(CNS disorder) AND Language = English from 2010 to 2022. There are just two forms of literature available: Articles and reviews. Data were processed with the software Cite-Space (version 6.1. R6). RESULTS: We analyzed 1884 articles from 200 schools in 72 countries/regions. Since 2015, the number of publications in this field has increased rapidly. China has the largest number of publications, but the articles published in the United States have better centrality and H-index. Among the top ten authors with the most published papers, five of them are from China, and the author with the most published papers is Wang Handong. The institution with the most articles was Nanjing University. To their credit, three of the top 10 most cited articles were written by Chinese scholars. The keyword co-occurrence map showed that "oxidative stress", "NRF2", "activation", "expression" and "brain" were the five most frequently used keywords. CONCLUSION: Research on the role of NRF2 in neurological diseases continues unabated. Researchers in developed countries published more influential papers, while Chinese scholars provided the largest number of articles. There have been numerous studies on the mechanism of NRF2 transcription factor in neurological diseases. NRF2 is also emerging as a potentially effective target for the treatment of neurological diseases. However, despite decades of research, our knowledge of NRF2 transcription factor in nervous system diseases is still limited. Further studies are needed in the future.

2.
Aging Dis ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-37196132

RESUMEN

Emerging evidence suggests that inflammation mediated by the pannexin1 channel contributes significantly to acute ischemic stroke. It is believed that the pannexin1 channel is key in initiating central system inflammation during the early stages of acute ischemic stroke. Moreover, the pannexin1 channel is involved in the inflammatory cascade to maintain the inflammation levels. Specifically, the interaction of pannexin1 channels with ATP-sensitive P2X7 purinoceptors or promotion of potassium efflux mediates the activation of the NLRP3 inflammasome, triggering the release of pro-inflammatory factors such as IL-1 and IL-18, exacerbating and sustaining inflammation of brain. Also, increased release of ATP induced by cerebrovascular injury activates pannexin1 in vascular endothelial cells. This signal directs peripheral leukocytes to migrate into ischemic brain tissue, leading to an expansion of the inflammatory zone. Intervention strategies targeting pannexin1 channels may greatly alleviate inflammation after acute ischemic stroke to improve this patient population's clinical outcomes. In this review, we sought to summarize relevant studies on inflammation mediated by the pannexin1 channel in acute ischemic stroke and discussed the possibility of using brain organoid-on-a-chip technology to screen miRNAs that exclusively target the pannexin1 channel to provide new therapeutic measures for targeted regulation of pannexin1 channel to reduce inflammation in acute ischemic stroke.

3.
J Biomed Nanotechnol ; 18(4): 1172-1179, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35854446

RESUMEN

Respiratory muscle paralysis caused by acute cervical spinal cord injury usually leads to pulmonary ventilation dysfunction and even death from respiratory failure. In addition to invasive treatments such as mechanical ventilation, the utilization of noninvasive respiratory support equipment plays an important role in long-term assisted breathing. In this study, we describes a wearable, noninvasive vest with adjustable pressure that enables assisted breathing and with an automatic alarm, and we aims to explore its safety and effectiveness on healthy adult participants. The vest monitors the human heart rate and the blood oxygen index data in real time, the alarm is automatically activated when the data is abnormal. Eight healthy participants had no obvious discomfort during the test while wearing the vest. Lung volumes, antero-posterior diameters, and left-right diameters at the second, fourth, and sixth ribs levels were acquired before and after inflation of the vest airbag, the data acquired by the imaging analysis using chest computed tomography showed significant differences before and after the inflation (p < 0.05). Thus, The vest designed for this study can achieve uniform and effective compression of the thorax, significantly changed the size of the thorax and lungs. It is expected to be applied as noninvasive support for patients with respiratory dysfunction.


Asunto(s)
Tórax , Dispositivos Electrónicos Vestibles , Adulto , Humanos , Pulmón , Presión , Tórax/fisiología , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...