Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
Nat Neurosci ; 23(12): 1456-1468, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32839617

RESUMEN

To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.


Asunto(s)
Células/clasificación , Neocórtex/citología , Transcriptoma , Animales , Biología Computacional , Humanos , Neuroglía/clasificación , Neuronas/clasificación , Análisis de la Célula Individual , Terminología como Asunto
4.
Elife ; 92020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32568072

RESUMEN

Among the brainstem raphe nuclei, the dorsal raphe nucleus (DR) contains the greatest number of Pet1-lineage neurons, a predominantly serotonergic group distributed throughout DR subdomains. These neurons collectively regulate diverse physiology and behavior and are often therapeutically targeted to treat affective disorders. Characterizing Pet1 neuron molecular heterogeneity and relating it to anatomy is vital for understanding DR functional organization, with potential to inform therapeutic separability. Here we use high-throughput and DR subdomain-targeted single-cell transcriptomics and intersectional genetic tools to map molecular and anatomical diversity of DR-Pet1 neurons. We describe up to fourteen neuron subtypes, many showing biased cell body distributions across the DR. We further show that P2ry1-Pet1 DR neurons - the most molecularly distinct subtype - possess unique efferent projections and electrophysiological properties. These data complement and extend previous DR characterizations, combining intersectional genetics with multiple transcriptomic modalities to achieve fine-scale molecular and anatomic identification of Pet1 neuron subtypes.


Asunto(s)
Núcleo Dorsal del Rafe/anatomía & histología , Ratones/anatomía & histología , Ratones/genética , Neuronas , Transcriptoma , Animales , Núcleo Dorsal del Rafe/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
5.
Curr Biol ; 29(13): 2145-2156.e5, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31231050

RESUMEN

Pathological aggression is commonly associated with psychiatric and neurological disorders and can impose a substantial burden and cost on human society. Serotonin (5HT) has long been implicated in the regulation of aggression in a wide variety of animal species. In Drosophila, a small group of serotonergic neurons selectively modulates the escalation of aggression. Here, we identified downstream targets of serotonergic input-two types of neurons with opposing roles in aggression control. The dendritic fields of both neurons converge on a single optic glomerulus LC12, suggesting a key pathway linking visual input to the aggression circuitry. The first type is an inhibitory GABAergic neuron: its activation leads to a decrease in aggression. The second neuron type is excitatory: its silencing reduces and its activation increases aggression. RNA sequencing (RNA-seq) profiling of this neuron type identified that it uses acetylcholine as a neurotransmitter and likely expresses 5HT1A, short neuropeptide F receptor (sNPFR), and the resistant to dieldrin (RDL) category of GABA receptors. Knockdown of RDL receptors in these neurons increases aggression, suggesting the possibility of a direct crosstalk between the inhibitory GABAergic and the excitatory cholinergic neurons. Our data show further that neurons utilizing serotonin, GABA, ACh, and short neuropeptide F interact in the LC12 optic glomerulus. Parallel cholinergic and GABAergic pathways descending from this sensory integration area may be key elements in fine-tuning the regulation of aggression.


Asunto(s)
Neuronas Colinérgicas/fisiología , Drosophila melanogaster/fisiología , Neuronas GABAérgicas/fisiología , Neuronas Serotoninérgicas/fisiología , Serotonina/metabolismo , Agresión/fisiología , Animales
6.
Elife ; 72018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30350781

RESUMEN

Cardiorespiratory recovery from apneas requires dynamic responses of brainstem circuitry. One implicated component is the raphe system of Pet1-expressing (largely serotonergic) neurons, however their precise requirement neonatally for homeostasis is unclear, yet central toward understanding newborn cardiorespiratory control and dysfunction. Here we show that acute in vivo perturbation of Pet1-neuron activity, via triggering cell-autonomously the synthetic inhibitory receptor hM4Di, resulted in altered baseline cardiorespiratory properties and diminished apnea survival. Respiratory more than heart rate recovery was impaired, uncoupling their normal linear relationship. Disordered gasp recovery from the initial apnea distinguished mice that would go on to die during subsequent apneas. Further, the risk likelihood of apnea-related mortality associated with suppression of Pet1 neurons was higher for animals with baseline elevated ventilatory equivalents for oxygen. These findings establish that Pet1 neurons play an active role in neonatal cardiorespiratory homeostasis and provide mechanistic plausibility for the serotonergic abnormalities associated with SIDS.


Asunto(s)
Apnea/patología , Tronco Encefálico/patología , Frecuencia Cardíaca , Neuronas/patología , Frecuencia Respiratoria , Factores de Transcripción/análisis , Animales , Animales Recién Nacidos , Homeostasis , Ratones , Análisis de Supervivencia
7.
J Neurosci ; 37(7): 1807-1819, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28073937

RESUMEN

Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1, referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine-N-oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei.SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using genetic tools, we characterize a 5-HT neuron subtype defined by expression of Tachykinin1 and Pet1 (Tac1-Pet1 neurons), mapping soma localization to the caudal medulla primarily and axonal projections to brainstem motor nuclei most prominently, and, when silenced, observed blunting of the ventilatory response to inhaled CO2Tac1-Pet1 neurons thus appear distinct from and contrast previously described Egr2-Pet1 neurons, which project primarily to chemosensory integration centers and are themselves chemosensitive.


Asunto(s)
Lectinas/metabolismo , Neuronas/fisiología , Núcleos del Rafe/citología , Respiración , Factores de Transcripción/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Dióxido de Carbono/farmacología , Colina O-Acetiltransferasa/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Lectinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Núcleos del Rafe/metabolismo , Respiración/efectos de los fármacos , Serotonina/metabolismo , Factores de Transcripción/genética , Tirosina 3-Monooxigenasa/metabolismo
8.
J Comp Neurol ; 524(3): 456-70, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25963823

RESUMEN

The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal.


Asunto(s)
Hurones/crecimiento & desarrollo , Hurones/fisiología , Neocórtex/crecimiento & desarrollo , Neocórtex/fisiología , Células-Madre Neurales/fisiología , Fase S/fisiología , Animales , Desoxiuridina/análogos & derivados , Técnica del Anticuerpo Fluorescente , Fase G1/fisiología , Neocórtex/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Tiempo
9.
Cell Cycle ; 9(10): 1990-7, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20436275

RESUMEN

Citron kinase (CitK), a protein essential to neurogenic cell division in the central nervous system, is highly polarized in neural progenitors. The mechanisms that polarize CitK to cellular domains that line the ventricular surface of neuroepithelium are currently not known. Here we report that Discs large 5 (Dlg5), a member of the MAGUK family, is an interactor of CitK required for CitK polarization. The CitK-Dlg5 interaction was first revealed in a protein array screen of proteins containing PDZ domains, and then subsequently confirmed by co-immunoprecipitation. Moreover, in Dlg5 (-/-) mice CitK fails to polarize in mitotic neuronal precursors. In addition, the total number of mitotic progenitors and the ratio of ventricular to abventricular mitotic progenitors in developing neocortex are significantly decreased in Dlg5 (-/-) embryos. Dlg5 is therefore required to maintain the polarization of a protein essential to neurogenic cytokinesis, and plays a role in localizing cell divisions to the surface of the lateral ventricles in embryonic brain.


Asunto(s)
Guanilato-Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Encéfalo/embriología , Encéfalo/metabolismo , División Celular/fisiología , Células Cultivadas , Guanilato-Quinasas/genética , Inmunohistoquímica , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Ventrículos Laterales/embriología , Ventrículos Laterales/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitosis/genética , Mitosis/fisiología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Ratas
10.
Dev Neurobiol ; 70(1): 1-15, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19790105

RESUMEN

Many of the mitoses that produce pyramidal neurons in neocortex occur at the dorsolateral surface of the lateral ventricles in the embryo. RanBPM was found in a yeast two-hybrid screen to potentially interact with citron kinase (CITK), a protein shown previously to localize to the surface of the lateral ventricles and to be essential to neurogenic mitoses. Similar to its localization in epithelia, RanBPM protein is concentrated at the adherens junctions in developing neocortex. The biochemical interaction between CITK and RanBPM was confirmed in coimmunoprecipitation and protein overlay experiments. To test for a functional role of RanPBM in vivo, we used in utero RNAi. RanBPM RNAi decreased the polarization of CITK to the ventricular surface, increased the number of cells in mitosis, and decreased the number of cells in cytokinesis. Finally, the effect of RanBPM knockdown on mitosis was reversed in embryos mutant for CITK. Together, these results indicate that RanBPM, potentially through interaction with CITK, plays a role in the progression of neocortical precursors through M-phase at the ventricular surface.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , División Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Neocórtex/fisiología , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Nicho de Células Madre/fisiología , Células Madre/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Uniones Adherentes/fisiología , Animales , Membrana Celular/fisiología , Polaridad Celular/fisiología , Ventrículos Cerebrales/embriología , Ventrículos Cerebrales/fisiología , Citocinesis/fisiología , Proteínas del Citoesqueleto/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitosis/fisiología , Neocórtex/embriología , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Transgénicas , Ratas Wistar
11.
Nat Med ; 15(1): 84-90, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19098909

RESUMEN

Disorders of neuronal migration can lead to malformations of the cerebral neocortex that greatly increase the risk of seizures. It remains untested whether malformations caused by disorders in neuronal migration can be reduced by reactivating cellular migration and whether such repair can decrease seizure risk. Here we show, in a rat model of subcortical band heterotopia (SBH) generated by in utero RNA interference of the Dcx gene, that aberrantly positioned neurons can be stimulated to migrate by reexpressing Dcx after birth. Restarting migration in this way both reduces neocortical malformations and restores neuronal patterning. We further find that the capacity to reduce SBH continues into early postnatal development. Moreover, intervention after birth reduces the convulsant-induced seizure threshold to a level similar to that in malformation-free controls. These results suggest that disorders of neuronal migration may be eventually treatable by reengaging developmental programs both to reduce the size of cortical malformations and to reduce seizure risk.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Modelos Animales de Enfermedad , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/genética , Convulsiones/genética , Animales , Animales Modificados Genéticamente , Movimiento Celular/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/terapia , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/veterinaria , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Terapia Genética , Malformaciones del Desarrollo Cortical del Grupo II/embriología , Malformaciones del Desarrollo Cortical del Grupo II/genética , Malformaciones del Desarrollo Cortical del Grupo II/patología , Malformaciones del Desarrollo Cortical del Grupo II/veterinaria , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/fisiología , Modelos Biológicos , Neuronas/patología , Neuronas/fisiología , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/fisiología , Embarazo , Interferencia de ARN/fisiología , Ratas , Convulsiones/patología , Convulsiones/terapia , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...