Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(15): 3913-3916, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527081

RESUMEN

This study develops a handheld optical coherence tomography angiography (OCTA) system that uses a high-speed (200 kHz) swept laser with a dual-reference common-path configuration for stable and fast imaging. The common-path design automatically avoids polarization and dispersion mismatches by using one circulator as the primary system element, ensuring a cost-effective and compact design for handheld probe use. With its stable envelope (i.e., sub-µm shifts) and phase variation (corresponding to nm changes in axial displacement), the minimum detectable flow velocity is ∼ 0.08 mm/s in our experiment, which gives the common-path setup a high potential for application in a handheld OCTA system for clinical skin screening. In vivo skin structures and microvasculature networks on the dorsum of the hand and cheek of a healthy human are imaged successfully.


Asunto(s)
Angiografía , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Angiografía/métodos , Piel , Microvasos , Rayos Láser , Angiografía con Fluoresceína
2.
JID Innov ; 1(2): 100010, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34909714

RESUMEN

Melanoma is a high-risk skin cancer because it tends to metastasize early and ultimately leads to death. In this study, we introduced a noninvasive multifunctional optical coherence tomography (MFOCT) for the early detection of premetastatic pathogenesis in cutaneous melanoma by label-free imaging of microstructures (i.e., providing the thickness and the scattering information) and microcirculation (i.e., providing depth-resolved angiography and lymphangiography). Using MFOCT-based approaches, we presented an in vivo longitudinal observation of the tumor microenvironment in Braf V600E/V600E ;Pten -/- mice with inducible melanoma monitored for 42 days. Quantitative analysis of MFOCT images identified an increased number of lymphatic and vascular vessels during tumor progression and faster lymphangiogenesis (beginning on day 21) than angiogenesis (beginning on day 28) in the melanoma microenvironment. We further observed lymphatic vessel enlargement from the first week of melanoma development, implying tumor cells interacting with the vessels and increased likelihood of metastasis. MFOCT identified cutaneous melanoma‒associated angiogenesis and lymphangiogenesis before the possible visual perception of the tumor (≥42 days) and before metastasis could be diagnosed using micropositron emission tomography (35 days). Thus, the proposed quantitative analysis using MFOCT has the potential for early detection of cutaneous melanoma progression or prediction of metastatic melanoma in a mouse model. However, retrospective and extensive experiments still need to be performed in the future to confirm the value of MFOCT in clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA