RESUMEN
Despite the preliminary success of transition metal-catalyzed [3+2] annulation of amides with olefins, the corresponding radical-type [3+2] annulation remains a laborious challenge. Herein we report the first photoredox-catalyzed radical-type [3+2] annulation of aromatic amides with olefins. We established an approach to generate unprecedented iminium radicals by reducing the oxyiminium intermediates, formed in situ from corresponding amides with Tf2O, via photoredox catalysis. The [3+2] annulation was achieved via stepwise radical process, instead of forming linear products via other pathways as previously reported. This annulation protocol exhibits excellent functional group tolerance, and a diversity of substrates are united under the photoredox conditions, affording iminium products that can be in situ diversified into 1-indanones, enamines and amines. Mechanistic investigations indicate reduction of the oxyiminium intermediate to the iminium radicals by excited-state of the photocatalyst initiates the catalytic cycle.
RESUMEN
Water-cooled wall tubes are susceptible to high-temperature corrosion during service. Applying high-performance coatings via laser cladding on the tube surfaces can significantly enhance corrosion resistance and extend the service life of the tubes, providing substantial economic advantages. This paper prepared Y2O3/IN625 composite coating by means of high-speed laser cladding. Furthermore, the effects of Y2O3 addition on the microstructure evolution, hardness, as well as the high-temperature corrosion behaviors have been systematically investigated. The results show that Y2O3 addition can effectively refine the microstructure of the Inconel 625 coating, but the phase composition has little change. The coating's hardness can also be improved by about 7.7%, reaching about 300 HV. Compared to Inconel 625 coating, the Y2O3-added composited coating shows superior high-temperature corrosion resistance, with the corrosion mass gain decreased by about 36.6%. The denser and tightly bonded Cr-rich oxides layer can be formed adjacent to the coating surface, which plays a predominant role in improving the coating corrosion resistance.
RESUMEN
X-ray ghost imaging with a crystal beam splitter has advantages in highly efficient imaging due to the simultaneous acquisition of signals from both the object beam and reference beam. However, beam splitting with a large field of view, uniform distribution and high correlation has been a great challenge up to now. Therefore, a dedicated beam splitter has been developed by optimizing the optical layout of a synchrotron radiation beamline and the fabrication process of a Laue crystal. A large field of view, consistent size, uniform intensity distribution and high correlation were obtained simultaneously for the two split beams. Modulated by a piece of copper foam upstream of the splitter, a correlation of 92% between the speckle fields of the object and reference beam and a Glauber function of 1.25 were achieved. Taking advantage of synthetic aperture X-ray ghost imaging (SAXGI), a circuit board of size 880 × 330 pixels was successfully imaged with high fidelity. In addition, even though 16 measurements corresponding to a sampling rate of 1% in SAXGI were used for image reconstruction, the skeleton structure of the circuit board can still be determined. In conclusion, the specially developed beam splitter is applicable for the efficient implementation of X-ray ghost imaging.
RESUMEN
INTRODUCTION: Brain organoids are believed to be able to regenerate impaired neural circuits and reinstate brain functionality. The neuronal activity of organoids is considered a crucial factor for restoring host function after implantation. However, the optimal stage of brain organoid post-transplantation has not yet been established. External electrical signal plays a crucial role in the physiology and development of a majority of human tissues. However, whether electrical input modulates the development of brain organoids, making them ideal transplant donors, is elusive. METHODS: Bioelectricity was input into cortical organoids by electrical stimulation (ES) with a multi-electrode array (MEA) to obtain a better-transplanted candidate with better viability and maturity, realizing structural-functional integration with the host brain. RESULTS: We found that electrical stimulation facilitated the differentiation and maturation of organoids, displaying well-defined cortical plates and robust functional electrophysiology, which was probably mediated via the pathway of calcium-calmodulin (CaM) dependent protein kinase II (CAMK II)-protein kinase A (PKA)-cyclic-AMP response binding protein (pCREB). The ES-pretreated D40 organoids displayed superior cell viability and higher cell maturity, and were selected to transplant into the damaged primary sensory cortex (S1) of host. The enhanced maturation was exhibited within grafts after transplantation, including synapses and complex functional activities. Moreover, structural-functional integration between grafts and host was observed, conducive to strengthening functional connectivity and restoring the function of the host injury. CONCLUSION: Our findings supported that electrical stimulation could promote the development of cortical organoids. ES-pretreated organoids were better-transplanted donors for strengthening connectivity between grafts and host. Our work presented a new physical approach to regulating organoids, potentially providing a novel translational strategy for functional recovery after brain injury. In the future, the development of 3D flexible electrodes is anticipated to overcome the drawbacks of 2D planar MEA, promisingly achieving multimodal stimulation and long-term recordings of brain organoids.
RESUMEN
The reconstruction of neural function and recovery of chronic damage following traumatic brain injury (TBI) remain significant clinical challenges. Exosomes derived from neural stem cells (NSCs) offer various benefits in TBI treatment. Numerous studies confirmed that appropriate preconditioning methods enhanced the targeted efficacy of exosome therapy. Interferon-gamma (IFN-γ) possesses immunomodulatory capabilities and is widely involved in neurological disorders. In this study, IFN-γ was employed for preconditioning NSCs to enhance the efficacy of exosome (IFN-Exo, IE) for TBI. miRNA sequencing revealed the potential of IFN-Exo in promoting neural differentiation and modulating inflammatory responses. Through low-temperature 3D printing, IFN-Exo was combined with collagen/chitosan (3D-CC-IE) to preserve the biological activity of the exosome. The delivery of exosomes via biomaterial scaffolds benefited the retention and therapeutic potential of exosomes, ensuring that they could exert long-term effects at the injury site. The 3D-CC-IE scaffold exhibited excellent biocompatibility and mechanical properties. Subsequently, 3D-CC-IE scaffold significantly improved impaired motor and cognitive functions after TBI in rat. Histological results showed that 3D-CC-IE scaffold markedly facilitated the reconstruction of damaged neural tissue and promoted endogenous neurogenesis. Further mechanistic validation suggested that IFN-Exo alleviated neuroinflammation by modulating the MAPK/mTOR signaling pathway. In summary, the results of this study indicated that 3D-CC-IE scaffold engaged in long-term pathophysiological processes, fostering neural function recovery after TBI, offering a promising regenerative therapy avenue.
RESUMEN
Human brain organoids represent a remarkable platform for modeling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses reveal that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays reveal that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.
RESUMEN
BACKGROUND: Breast cancer has the second highest mortality rate of all cancers and occurs mainly in women. OBJECTIVE: To investigate the relationship between magnetic resonance imaging (MRI) radiomics features and histological grade of invasive ductal carcinoma (IDC) of the breast and to evaluate its diagnostic efficacy. METHODS: The two conventional MRI quantitative indicators, i.e. the apparent diffusion coefficient (ADC) and the initial enhancement rate, were collected from 112 patients with breast cancer. The breast cancer lesions were manually segmented in dynamic contrast-enhanced MRI (DCE-MRI) and ADC images, the differences in radiomics features between Grades I, II and III IDCs were compared and the diagnostic efficacy was evaluated. RESULTS: The ADC values (0.77 ± 0.22 vs 0.91 ± 0.22 vs 0.92 ± 0.20, F= 4.204, p< 0.01), as well as the B_sum_variance (188.51 ± 67.803 vs 265.37 ± 77.86 vs 263.74 ± 82.58, F= 6.040, p< 0.01), L_energy (0.03 ± 0.02 vs 0.13 ± 0.11 vs 0.12 ± 0.14, F= 7.118, p< 0.01) and L_sum_average (0.78 ± 0.32 vs 16.34 ± 4.23 vs 015.45 ± 3.74, F= 21.860, p< 0.001) values of patients with Grade III IDC were significantly lower than those of patients with Grades I and II IDC. The B_uniform (0.15 ± 0.12 vs 0.11 ± 0.04 vs 0.12 ± 0.03, F= 3.797, p< 0.01) and L_SRE (0.85 ± 0.07 vs 0.78 ± 0.03 vs 0.79 ± 0.32, F= 3.024, p< 0.01) values of patients with Grade III IDC were significantly higher than those of patients with Grades I and II IDC. All differences were statistically significant (p< 0.05). The ADC radiomics signature model had a higher area-under-the-curve value in identifying different grades of IDC than the ADC value model and the DCE radiomics signature model (0.869 vs 0.711 vs 0.682). The accuracy (0.812 vs 0.647 vs 0.710), specificity (0.731 vs 0.435 vs 0.342), positive predictive value (0.815 vs 0.663 vs 0.669) and negative predictive value (0.753 vs 0.570 vs 0.718) of the ADC radiomics signature model were all significantly better than the ADC value model and the DCE radiomics signature model. CONCLUSION: ADC values and breast MRI radiomics signatures are significant in identifying the histological grades of IDC, with the ADC radiomics signatures having greater value.
Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Imagen por Resonancia Magnética , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Persona de Mediana Edad , Carcinoma Ductal de Mama/diagnóstico por imagen , Carcinoma Ductal de Mama/patología , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Clasificación del Tumor , Estudios Retrospectivos , Medios de Contraste , RadiómicaRESUMEN
To investigate the particle sources before, during, and after the 2022 Beijing Winter Olympic and Paralympic (WOP) in Beijing, ambient particles were passively collected from January to March 2022. The physicochemical properties including morphology, size, shape parameters, and elemental compositions were analyzed by the IntelliSEM EPAS (an advanced computer-controlled scanning electron microscopy [CCSEM] system). Using the user-defined classification rules, 37,174 individual particles were automatically classified into 27 major groups and further attributed to seven major sources based on the source-associated characteristics, including mineral dust, secondary aerosol, combustion/industry, carbonaceous particles, salt-related particles, biological particles, and fiber particles. Our results showed that mineral dust (66.5%), combustion/industry (12.6%), and secondary aerosol (6.3%) were the three major sources in a wide size range of 0.2-42.8 µm. During the Winter Olympic Games period, low emission of anthropogenic particles and favorable meteorological conditions contributed to significantly improved air quality. During the Winter Paralympic Games period, more particles sourced from the dust storm, secondary formed particles, and the adverse meteorological conditions resulted in relatively worse air quality. The secondary aerosol all decreased during the competition period, while increased during the non-competition period. Sulfate-related particles had explosive growth and further aggravate the pollution degree during the non-competition period, especially under adverse meteorological conditions. These results provide microscopic evidence revealing variations of physicochemical properties and sources in response to the control measures and meteorological conditions.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Beijing , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Tamaño de la Partícula , Monitoreo del Ambiente , Contaminación del Aire/análisis , Polvo/análisis , Estaciones del Año , Aerosoles/análisis , MineralesRESUMEN
Since the initial report in 1975, the Shono oxidation has become a powerful tool to functionalize the α position of amines, including proline derivatives, by electrochemical oxidation. However, the application of electrochemical Shono oxidations is restricted to the preparation of simple building blocks and homogeneous Shono-type oxidation of proline derivatives remains challenging. The late-stage functionalization at proline residues embedded within peptides is highly important as substitutions about the proline ring are known to affect biological and pharmacological activities. Here, we show that homogenous copper-catalyzed oxidation conditions complement the Shono oxidation and this general protocol can be applied to a series of formal C-C coupling reactions with a variety of nucleophiles using a one-pot procedure. This protocol shows good tolerance toward 19 proteinogenic amino acids and was used to functionalize several representative bioactive peptides, including captopril, enalapril, Smac, and endomorphin-2. Last, peptide cyclization can also be achieved by using an appropriately positioned side-chain hydroxyl moiety.
Asunto(s)
Cobre , Prolina , Péptidos , Aminoácidos , Aminas , CatálisisRESUMEN
Structure modification of drugs is a reliable way to optimize lead compounds, among which the most striking and direct method is late-stage functionalization (LSF). Here, we employed the Cu-catalyzed C-H LSF to modify 5-nitrofuran drugs. A series of modifications have been carried out including hydroxylation, methylation, azidination, cyanation, arylation, etc. Antibacterial activities of all compounds in vitro were measured. The results showed that compound 1 and compound 18 were the most active among all compounds. Meanwhile, the cell cytotoxicity assays of potent compounds 1, 3, 4, 5 & 18 and the parent drug FZD were conducted.
RESUMEN
Schistosomiasis is still one of the most significant neglected tropical diseases worldwide, and China is endemic for Schistosoma japonicum. With its great achievement in schistosomiasis control, the government of China has set the goal to eliminate the parasitic disease at the country level by 2030. However, one major challenge is the remaining huge areas of habitats for the intermediate host Oncomelania hupensis. This is further exacerbated by an increasing number of new emerging snail habitats reported each year. Therefore, population genetics on snails in such areas will be useful in evaluation of snail control effect and/or dispersal. We then sampled snails from new emerging habitats in Taicang of Jiangsu, China, a currently S. japonicum non-endemic area from 2014 to 2017, and performed population genetic analyses based on nine microsatellites. Results showed that all snail populations had low genetic diversity, and most genetic variations originated from within snail populations. The estimated effective population size for the 2015 population was infinitive. All snails could be separated into two clusters, and further DIYABC analysis revealed that both the 2016 and the 2017 populations may derive from the 2015, indicating that the 2017 population must have been missed in the field survey performed in 2016. These findings may have implications in development of more practical guidelines for snail monitoring and control.
RESUMEN
BACKGROUND: The effects of traumatic brain injury (TBI) can include physical disability and even death. The development of effective therapies to promote neurological recovery is still a challenging problem. 3D-printed biomaterials are considered to have a promising future in TBI repair. The injury-preconditioned secretome derived from human umbilical cord blood mesenchymal stem cells showed better stability in neurological recovery after TBI. Therefore, it is reasonable to assume that a biological scaffold loaded with an injury-preconditioned secretome could facilitate neural network reconstruction after TBI. METHODS: In this study, we fabricated injury-preconditioned secretome/collagen/heparan sulfate scaffolds by 3D printing. The scaffold structure and porosity were examined by scanning electron microscopy and HE staining. The cytocompatibility of the scaffolds was characterized by MTT analysis, HE staining and electron microscopy. The modified Neurological Severity Score (mNSS), Morris water maze (MWM), and motor evoked potential (MEP) were used to examine the recovery of cognitive and locomotor function after TBI in rats. HE staining, silver staining, Nissl staining, immunofluorescence, and transmission electron microscopy were used to detect the reconstruction of neural structures and pathophysiological processes. The biocompatibility of the scaffolds in vivo was characterized by tolerance exposure and liver/kidney function assays. RESULTS: The excellent mechanical and porosity characteristics of the composite scaffold allowed it to efficiently regulate the secretome release rate. MTT and cell adhesion assays demonstrated that the scaffold loaded with the injury-preconditioned secretome (3D-CH-IB-ST) had better cytocompatibility than that loaded with the normal secretome (3D-CH-ST). In the rat TBI model, cognitive and locomotor function including mNSS, MWM, and MEP clearly improved when the scaffold was transplanted into the damage site. There is a significant improvement in nerve tissue at the site of lesion. More abundant endogenous neurons with nerve fibers, synaptic structures, and myelin sheaths were observed in the 3D-CH-IB-ST group. Furthermore, the apoptotic response and neuroinflammation were significantly reduced and functional vessels were observed at the injury site. Good exposure tolerance in vivo demonstrated favorable biocompatibility of the scaffold. CONCLUSIONS: Our results demonstrated that injury-preconditioned secretome/collagen/heparan sulfate scaffolds fabricated by 3D printing promoted neurological recovery after TBI by reconstructing neural networks, suggesting that the implantation of the scaffolds could be a novel way to alleviate brain damage following TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Ratas , Humanos , Animales , Secretoma , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Encefálicas/terapia , Colágeno/química , Impresión Tridimensional , Andamios del Tejido/químicaRESUMEN
Safe, economical and high-quality storage of huge amount of grain for a longer duration under COVID-19 is a challenge and underground storage is a good alternative due to stable temperature, less cooling consumption and better pest control effect. However, the underground silo has very high requirement of waterproof and the performance of underground silo under combined compression and water pressure was rarely studied. In this study, a new composite structure, polypropylene - concrete wall (PPCW) for underground silo was proposed. Total three PPCWs with different size were manufactured to test the waterproofing features under joint effect of compression and hydropower of water. The strains, lateral displacement and cracking conditions of PPCWs were investigated. According to the experimental results, the PP board and concrete presented very good performance of interaction working under compression. The maximum water pressure of the specimens with stud spacing of 250mm increased by about 15.7% compared with that of the specimens with stud spacing of 350mm. The welding and strength of PP board has the greatest influence on the ultimate performance of PPCW. Based on the empirical coefficient method of concrete flat-slab and tested results, a new modified method was proposed to predict the bending moment at mid-span of PPCW by using an adjustment coefficient, R m . Considering this experimental case only, the adopting a R m = 0.64 could control the relative errors between test and analysis under 15.6%.
RESUMEN
Schistosomiasis is a major neglected tropical disease mainly caused by Schistosoma haematobium, S. japonicum and S. mansoni, and results in the greatest disease burden. Mass drug administration (MDA) with praziquantel (PZQ), a single drug only available for the disease, has played a vital role in schistosomiasis control. Therefore, any possibility of selection of the parasites for PZQ resistance or low sensitivity may hamper the 2030's target of global disease elimination. We had experimentally demonstrated the long-term survival and reproductive potential of single-sex (of either sex) S. japonicum infections in definitive hosts mice. What has not yet been adequately addressed is whether the long live single-sex schistosomes remain sensitive to PZQ, and what reproduction potential for those schistosomes surviving treatment may have. We therefore performed experimental mice studies to explore the treatment effectiveness of PZQ (at total doses of 200 or 400 mg/kg, corresponding to the sub-standard or standard treatment doses in humans) for single-sex S. japonicum aged three months old. The results showed that no treatment efficiency was observed on female schistosomes, whereas on male schistosomes only at PZQ 400 mg/kg a significant higher efficiency in reducing worm burdens was observed. Moreover, either schistosome males or females surviving PZQ treatment remained their reproduction potential as normal. The results indicate that long (i.e., three months) live single-sex S. japonicum can easily survive the current treatment strategy, and moreover, any schistosomes, if with PZQ resistance or low sensitivity, could be easily transmitted in nature. Therefore, in order to realize the target for the national and the global schistosomiasis elimination, there is undoubtedly a great need for refining PZQ administration and dosage, looking for alternative therapies, and/or developing vaccines against schistosome.
Asunto(s)
Schistosoma japonicum , Esquistosomiasis mansoni , Humanos , Masculino , Femenino , Ratones , Animales , Lactante , Praziquantel/uso terapéutico , Esquistosomiasis mansoni/tratamiento farmacológico , Schistosoma haematobium , Resultado del Tratamiento , Schistosoma mansoniRESUMEN
BACKGROUND: Stroke is the leading cause of disability worldwide, resulting in severe damage to the central nervous system and disrupting neurological functions. There is no effective therapy for promoting neurological recovery. Growing evidence suggests that the composition of exosomes from different microenvironments may benefit stroke. Therefore, it is reasonable to assume that exosomes secreted in response to infarction microenvironment could have further therapeutic effects. METHODS: In our study, cerebral infarct tissue extracts were used to pretreat umbilical cord mesenchymal stem cells (UCMSC). Infarct-preconditioned exosomes were injected into rats via tail vein after middle cerebral artery occlusion (MCAO). The effect of infarct-preconditioned exosomes on the neurological recovery of rats was examined using Tunel assay, 2,3,5-triphenyltetrazolium chloride (TTC) assay, magnetic resonance imaging (MRI) analyses, modified Neurological Severity Score (mNSS), Morris water maze (MWM), and vascular remodeling analysis. Mi-RNA sequencing and functional enrichment analysis were used to validate the signal pathway involved in the effect of infarct-preconditioned exosomes. Human umbilical vein endothelial cells (HUVECs) were co-cultured with the isolated exosomes. Cell Counting Kit-8 (CCK-8) assay, scratch healing, and Western blot analysis were used to detect the biological behavior of HUVECs. RESULTS: The results showed that compared with normal exosomes, infarct-preconditioned exosomes further promoted vascular remodeling and recovery of neurological function after stroke. The function of upregulated miRNAs and their target genes which is beneficial to vascular smooth muscle cells verified the importance of vascular remodeling in improving stroke. Better resistance to oxygen-glucose deprivation/reoxygenation (OGD/R), reduced apoptosis, and enhanced migration were observed in infarct-preconditioned exosomes-treated umbilical vein endothelial cells. CONCLUSIONS: Our results demonstrated that infarct-preconditioned exosomes promoted neurological recovery after stroke by enhancing vascular endothelial remodeling, suggested that infarct-preconditioned exosomes could be a novel way to alleviate brain damage following a stroke.
Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Accidente Cerebrovascular , Animales , Células Endoteliales , Exosomas/metabolismo , Humanos , Infarto de la Arteria Cerebral Media , Células Madre Mesenquimatosas/metabolismo , Ratas , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia , Cordón Umbilical , Remodelación VascularRESUMEN
Regiodivergent alkene functionalization that produces either regioisomer starting from the same raw materials is desirable. Herein, we report a nickel-catalyzed switchable site-selective alkene hydroalkylation. The selection of reaction temperatures leads to protocols that provide regiodivergent hydroalkylated products starting from a single alkene substrate. This protocol allows the convenient synthesis of α- and ß-branched protected amines, both of which are important to the fields of pharmaceutical chemistry and biochemistry. In addition, enantioenriched ß-branched alkylamines can be accessed in a catalytic asymmetric variant. Preliminary mechanistic studies indicate that the formation of a more stable nickelacycle provides the driving force of migration. The thermodynamic and kinetic properties of different reduction elimination intermediates are responsible for the switchable site-selectivity.
Asunto(s)
Alquenos , Níquel , Alquenos/química , Aminas/química , Catálisis , Níquel/química , TemperaturaRESUMEN
Long-term manganese exposure causes a neurodegenerative disorder referred to as manganese poisoning, but the mechanism remains unclear and no specific treatment is available. Oxidative stress is widely recognised as one of the main causes of manganese-induced neurotoxicity. In recent years, the role of histone acetylation in neurodegenerative diseases has been widely concerned. curcumin is a natural polyphenol compound extracted from the rhizome of turmeric and exhibits both antioxidant and neuroprotective properties. Therefore, we aimed to investigate whether and how curcumin protects against manganese-induced neurotoxicity from the perspective of histone acetylation, based on the reversibility of histone acetylation modification. In this study, rats were treated with or without curcumin and subjected to long-term manganese exposure. Results that treatment of manganese decreased the protein expression of H3K18 acetylation and H3K27 acetylation at the promoters of oxidative stress-related genes and inhibited the expression of these genes. Nevertheless, curcumin increased the H3K27 acetylation level at the manganese superoxide dismutase (SOD2) gene promoter and promoted the expression of SOD2 gene. Oxidative damage in the rat striatum as well as learning and memory dysfunction were ameliorated after curcumin treatment. Taken together, our results suggest that the regulation of oxidative stress by histone acetylation may be a key mechanism of manganese-induced neurotoxicity. In addition, curcumin ameliorates Mn-induced neurotoxicity may be due to alleviation of oxidative damage mediated by increased activation of H3K27 acetylation at the SOD2 gene promoter.
Asunto(s)
Curcumina , Intoxicación por Manganeso , Acetilación , Animales , Curcumina/farmacología , Expresión Génica , Histonas/metabolismo , Manganeso/metabolismo , Manganeso/toxicidad , Estrés Oxidativo , RatasRESUMEN
Androgen receptor (AR) serves as a main therapeutic target for prostate cancer (PCa). However, resistance to anti-androgen therapy (SAT) inevitably occurs. Indomethacin is a nonsteroidal anti-inflammatory drug that exhibits activity against prostate cancer. Recently, we designed and synthesized a series of new indomethacin derivatives (CZ compounds) via Pd (II)-catalyzed synthesis of substituted N-benzoylindole. In this study, we evaluated the antitumor effect of these novel indomethacin derivatives in castration-resistant prostate cancer (CRPC). Upon employing CCK-8 cell viability assays and colony formation assays, we found that these derivatives had high efficacy against CRPC tumor growth in vitro. Among these derivatives, CZ-212-3 exhibited the most potent efficacy against CRPC cell survival and on apoptosis induction. Mechanistically, CZ-212-3 significantly suppressed the expression of AR target gene networks by degrading AR and its variants. Consistently, CZ-212-3 significantly inhibited tumor growth in CRPC cell line-based xenograft and PDX models in vivo. Taken together, the data show that the indomethacin derivative CZ-212-3 significantly inhibited CRPC tumor growth by degrading AR and its variants and could be a promising agent for CRPC therapy.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Línea Celular Tumoral , Proliferación Celular , Xenoinjertos , Humanos , Indometacina/farmacología , Indometacina/uso terapéutico , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Nitrogen heterocycle represents a ubiquitous skeleton in natural products and drugs. Late-stage C(sp3)-H bond functionalization of N-heterocycles with broad substrate scope remains a challenge and of particular significance to modern chemical synthesis and pharmaceutical chemistry. Here, we demonstrate copper-catalysed late-stage C(sp3)-H functionalizaion of N-heterocycles using commercially available catalysts under mild reaction conditions. We have investigated 8 types of N-heterocycles which are usually found as medicinally important skeletons. The scope and utility of this approach are demonstrated by late-stage C(sp3)-H modification of these heterocycles including a number of pharmaceuticals with a broad range of nucleophiles, e.g. methylation, arylation, azidination, mono-deuteration and glycoconjugation etc. Preliminary mechanistic studies reveal that the reaction undergoes a C-H fluorination process which is followed by a nucleophilic substitution.