Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(31)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38631327

RESUMEN

Clean room facilities are becoming more popular in both academic and industry settings, including low-and middle-income countries. This has led to an increased demand for cost-effective gas sensors to monitor air quality. Here we have developed a gas sensor using CoNiO2nanoparticles through combustion method. The sensitivity and selectivity of the sensor towards CO2were influenced by the structure of the nanoparticles, which were affected by the reducing agent (biofuels) used during synthesis. Among all reducing agents, urea found to yield highly crystalline and uniformly distributed CoNiO2nanoparticles, which when developed into sensors showed high sensitivity and selectivity for the detection of CO2gas in the presence of common interfering volatile organic compounds observed in cleanroom facilities including ammonia, formaldehyde, acetone, toluene, ethanol, isopropanol and methanol. In addition, the urea-mediated nanoparticle-based sensors exhibited room temperature operation, high stability, prompt response and recovery rates, and excellent reproducibility. Consequently, the synthesis approach to nanoparticle-based, energy efficient and affordable sensors represent a benchmark for CO2sensing in cleanroom settings.


Asunto(s)
Dióxido de Carbono , Nanopartículas , Urea , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Urea/análisis , Nanopartículas/química , Compuestos Orgánicos Volátiles/análisis , Dióxido de Silicio/química , Reproducibilidad de los Resultados
2.
Materials (Basel) ; 15(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36556812

RESUMEN

In this study, a polymer nanocomposite is synthesized using magnetic and conducting fillers for enhanced electromagnetic interference (EMI) shielding. Alfa-ferrite (α-Fe2O3) nanoparticles with minimal multiwalled carbon nanotube (MWCNT) as low as 5 weight % in combination with variable concentrations of graphene nanoplatelets (GNP) are used as fillers in low-density polyethylene (LDPE) polymer matrix. Nanofillers and the polymer matrix are characterized by various techniques such as XRD, SEM, color mapping, EDAX, TGA, etc. The EMI shielding efficiency of the LDPE-based nanocomposites is tested using Vector Network Analyzer (VNA). The results showed that composite with LDPE:MWCNT:GNP:α-FO-50:5:40:5 displayed enhanced EMI shielding (in X-band (8.2-12.4 GHz) compared to other concentrations studied. This is due to the superior ohmic, dielectric, and magnetic losses at this particular composition and to the synergism amongst the filler. An attenuation of 99.99% was achieved for 5% α-Fe2O3. The mechanistic aspects of the shielding are discussed using permittivity, conductivity, and attenuation.

3.
Nanoscale Adv ; 2(12): 5529-5554, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36133867

RESUMEN

Recent developments in nanoscience and technology have addressed many of the problems associated with water quality. Accordingly, using the technological outputs of the recent research on nanomaterials, the best solution for the purification of water is highlighted in this review. Herein, the main objective is to provide mechanistic insight into the synthesis of various inorganic nanoadsorbents and their adsorption chemistry for poisonous metal ions present in polluted water. Initially, the toxicity and carcinogenicity of As3+, Pb2+, Cr6+, Cd2+, and Hg2+ metal ions are highlighted. For the removal of these toxic ions, this review focuses on eco-friendly nanoadsorbents. The various preparation procedures utilized for the preparation of nanoadsorbents are briefly discussed. Generally, this is because of the adsorption capacity of nanoadsorbents depends on their morphology, shape, size, surface area, surface active sites, functional groups, and quantization effect. Also, due to the importance of their mechanism of action, the recent developments and challenges of novel nanoadsorbents such as metal oxides, core shell nanoparticles, magnetic nano ferrates, and functionalized core shell magnetic oxides and the processes for the treatment of water contaminated by toxic metal ions such as As3+, Pb2+, Cr6+, Cd2+, and Hg2+ are exclusively reviewed. Further, the adsorption efficiency of inorganic nanoadsorbents is also compared with that of activated carbon derived from various sources for all the above-mentioned metal ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...