Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765285

RESUMEN

This research investigates the gel formation behaviour and drug-controlling performance of doxycycline-loaded ibuprofen-based in-situ forming gels (DH-loaded IBU-based ISGs) for potential applications in periodontal treatment. The investigation begins by exploring the physical properties and gel formation behaviour of the ISGs, with a particular focus on determining their sustained release capabilities. To gain a deeper understanding of the molecular interactions and dynamics within the ISGs, molecular dynamic (MD) simulations are employed. The effects of adding IBU and DH on reducing surface tension and water tolerance properties, thus affecting molecular properties. The phase transformation phenomenon is observed around the interface, where droplets of ISGs move out to the water phase, leading to the precipitation of IBU around the interface. The optimization of drug release profiles ensures sustained local drug release over seven days, with a burst release observed on the first day. Interestingly, different organic solvents show varying abilities to control DH release, with dimethyl sulfoxide (DMSO) demonstrating superior control compared to N-Methyl-2-pyrrolidone (NMP). MD simulations using AMBER20 software provide valuable insights into the movement of individual molecules, as evidenced by root-mean-square deviation (RMSD) values. The addition of IBU to the system results in the retardation of IBU molecule movement, particularly evident in the DMSO series, with the diffusion constant value of DH reducing from 1.2452 to 0.3372 and in the NMP series from 0.3703 to 0.2245 after adding IBU. The RMSD values indicate a reduction in molecule fluctuation of DH, especially in the DMSO system, where it decreases from over 140 to 40 Å. Moreover, their radius of gyration is influenced by IBU, with the DMSO system showing lower values, suggesting an increase in molecular compactness. Notably, the DH-IBU configuration exhibits stable pairing through H-bonding, with a higher amount of H-bonding observed in the DMSO system, which is correlated with the drug retardation efficacy. These significant findings pave the way for the development of phase transformation mechanistic studies and offer new avenues for future design and optimization formulation in the ISG drug delivery systems field.

2.
Pharmaceutics ; 15(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37631268

RESUMEN

As an alternative to the traditional polymeric-based system, it is now possible to use an in situ forming system that is based on small molecules. Borneol was used as matrix formation in this study. While triacetin was incorporated into the formulation for prolonging the drug release. The objective of this study is to understand the initial period of the solvent exchange mechanism at the molecular level, which would provide a basis for explaining the matrix formation and drug release phenomena. The evaluation of basic physical properties, matrix formation, in vitro drug release, and molecular dynamics (MD) simulation of borneol-based in situ forming matrixes (ISM) was conducted in this study. The proportion of triacetin was found to determine the increase in density and viscosity. The density value was found to be related to viscosity which could be used for the purpose of prediction. Slow self-assembly of ISM upon the addition of triacetin was associated with higher viscosity and lower surface tension. This phenomenon enabled the regulation of solvent exchange and led to sustaining the drug release. In MD simulation using AMBER Tools, the free movement of the drug and the rapid approach to equilibrium of both solvent and water molecule in a solvent exchange mechanism in borneol-free ISM was observed, supporting that sustained release would not occur. Water infiltration was slowed down and NMP movement was restricted by the addition of borneol and triacetin. In addition, the increased proportion of triacetin promoted the diminished down of all substances' movement because of the viscosity. The diffusion constant of relevant molecules decreased with the addition of borneol and/or triacetin. Although the addition of triacetin tended to slow down the solvent exchange and molecular movement from computation modelling results, it may not guarantee to imply the best drug release control. The Low triacetin-incorporated (5%) borneol-based ISM showed the highest ability to sustain the drug release due to its self-assembly and has proper solvent exchange. MD simulation addressed the details of the mechanism at the beginning of the process. Therefore, both MD and classical methods contribute to a clearer understanding of solvent exchange from the molecular to macroscopic level and from the first nanosecond of the formulation contact with water to the 10-day of drug release. These would be beneficial for subsequent research and development efforts in small molecule-based in situ forming systems.

3.
Gels ; 9(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37504434

RESUMEN

Borneol has been successfully employed as a gelling agent for in situ forming gel (ISG). While 40% borneol can regulate drug release, there is interest in novel approaches to achieve extended drug release, particularly through the incorporation of hydrophobic substances. Herein, triacetin was selected as a hydrophobic additive solvent for doxycycline hyclate (Dox)-loaded 40% borneol-based ISGs in N-methyl-2-pyrrolidone (NMP) or dimethyl sulfoxide (DMSO), which were subsequently evaluated in terms of their physicochemical properties, gel formation morphology, water sensitivity, drug release, and antimicrobial activities. ISG density and viscosity gradually decreased with the triacetin proportion to a viscosity of <12 cPs and slightly influenced the surface tension (33.14-44.33 mN/m). The low expelled force values (1.59-2.39 N) indicated the convenience of injection. All of the prepared ISGs exhibited favorable wettability and plastic deformation. Higher gel firmness from ISG prepared using NMP as a solvent contributed to the ability of more efficient controlled drug release. High triacetin (25%)-loaded ISG retarded solvent diffusion and gel formation, but diminished gel firmness and water sensitivity. ISG containing 5% triacetin efficiently prolonged Dox release up to 10 days with Fickian diffusion and presented effective antimicrobial activities against periodontitis pathogens such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Therefore, the Dox-loaded 40% borneol-based ISG with 5% triacetin is a potential effective local ISG for periodontitis treatment.

4.
Gels ; 9(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37504462

RESUMEN

Solvent exchange-induced in situ forming gel (ISG) is currently an appealing dosage form for periodontitis treatment via localized injection into the periodontal pocket. This study aims to apply Eudragit L and Eudragit S as matrix components of ISG by using monopropylene glycol as a solvent for loading levofloxacin HCl for periodontitis treatment. The influence of Eudragit concentration was investigated in terms of apparent viscosity, rheological behavior, injectability, gel-forming behavior, and mechanical properties. Eudragit L-based formulation presented less viscosity, was easier to inject, and could form more gel than Eudragit S-based ISG. Levofloxacin HCl-loading diminished the viscosity of Eudragit L-based formulation but did not significantly change the gel formation ability. Higher polymer loading increased viscosity, force-work of injectability, and hardness. SEM photographs and µCT images revealed their scaffold formation, which had a denser topographic structure and less porosity attained owing to higher polymer loading and less in vitro degradation. By tracking with fluorescence dyes, the interface interaction study revealed crucial information such as solvent movement ability and matrix formation of ISG. They prolonged the drug release for 14 days with fickian drug diffusion kinetics and increased the release amount above the MIC against test microbes. The 1% levofloxacin HCl and 15% Eudragit L dissolved in monopropylene glycol (LLM15) was a promising ISG because of its appropriate viscosity (3674.54 ± 188.03 cP) with Newtonian flow, acceptable gel formation and injectability (21.08 ± 1.38 N), hardness (33.81 ± 2.3 N) and prolonged drug release with efficient antimicrobial activities against S. aureus (ATCC 6538, 6532, and 25923), methicillin-resistant S. aureus (MRSA) (S. aureus ATCC 4430), E. coli ATCC 8739, C. albicans ATCC 10231, P. gingivalis ATCC 33277, and A. actinomycetemcomitans ATCC 29522; thus, it is the potential ISG formulation for periodontitis treatment by localized periodontal pocket injection.

5.
Gels ; 9(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37367165

RESUMEN

Solvent exchange-induced in situ forming gel (ISG) has emerged as a versatile drug delivery system, particularly for periodontal pocket applications. In this study, we developed lincomycin HCl-loaded ISGs using a 40% borneol-based matrix and N-methyl pyrrolidone (NMP) as a solvent. The physicochemical properties and antimicrobial activities of the ISGs were evaluated. The prepared ISGs exhibited low viscosity and reduced surface tension, allowing for easy injection and spreadability. Gel formation increased the contact angle on agarose gel, while higher lincomycin HCl content decreased water tolerance and facilitated phase separation. The drug-loading influenced solvent exchange and matrix formation, resulting in thinner and inhomogeneous borneol matrices with slower gel formation and lower gel hardness. The lincomycin HCl-loaded borneol-based ISGs demonstrated sustained drug release above the minimum inhibitory concentration (MIC) for 8 days, following Fickian diffusion and fitting well with Higuchi's equation. These formulations exhibited dose-dependent inhibition of Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 8739, and Prophyromonas gingivalis ATCC 33277, and the release of NMP effectively inhibited Candida albicans ATCC 10231. Overall, the 7.5% lincomycin HCl-loaded 40% borneol-based ISGs hold promise as localized drug delivery systems for periodontitis treatment.

6.
Int J Pharm ; 617: 121603, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35192882

RESUMEN

Given its safety and apparent low aqueous solubility, borneol may serve as a matrix forming component of anti-solvent based in situ forming matrixes (ISMs) for crevicular pocket targeting. Drug-free and vancomycin hydrochloride-loaded borneol ISMs were evaluated for pH, density, viscosity, contact angle, surface tension, matrix formation, drug release behavior, in vitro degradability and antimicrobial activities. Density and pH values of borneol-based ISMs decreased with increasing borneol concentration. Given their markedly low viscosity could facilitate better injectability. The contact angles of the drug-free and vancomycin HCl-loaded borneol ISMs increased after being in contact with the agarose gel or the bulge tissue of porcine due to phase inversion. A dense borneol crystal matrix formed after using the highly concentrated ISM corresponded to fast matrix formation. The borneol-based ISM exhibited a sustainable drug release longer than 14 days with a diffusion-controlled release mechanism. Moreover, the developed ISM exhibited strong antimicrobial activities against various microbes. Thus, the vancomycin HCl-loaded borneol-based ISM is a potentially effective local anti-solvent-based ISM for periodontitis treatment via crevicular pocket injection.


Asunto(s)
Pirrolidinonas , Vancomicina , Animales , Canfanos , Liberación de Fármacos , Pirrolidinonas/química , Solubilidad , Porcinos
7.
Drug Dev Ind Pharm ; 46(12): 2032-2040, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33104388

RESUMEN

The purpose of this study was to prepare solid dispersions of triamterene (TRT) with ascorbic acid (AA) or ascorbic acid 2 glucoside (AA2G) and to evaluate their physical properties. Solid dispersions were prepared by dissolving each sample in an organic solvent and evaporation (EVP). Powder X-ray diffraction (PXRD) revealed a halo pattern for EVP1 (AA/TRT = 1/1) and EVP2 (AA2G/TRT = 1/1). In differential scanning calorimetry (DSC), endothermic peaks due to the melting of TRT and AA disappeared for EVP1 (AA/TRT = 1/1), and the melting peaks of TRT and AA2G disappeared for EVP2 (AA2G/TRT = 1/1). Fourier transform infrared (FT-IR) spectroscopy revealed broadened peaks for EVP1 (AA/TRT = 1/1) and EVP2 (AA2G/TRT = 1/1) due to the hydroxyl groups (-OH) of AA and the amino groups (-NH2) of TRT and also revealed a peak shift due to the pteridine skeleton (C = N) of TRT. In near-infrared absorption (NIR) spectroscopy, peaks due to the hydroxyl groups (-OH) of AA and AA2G were found for EVP1 (AA/TRT = 1/1) and EVP2 (AA2G/TRT = 1/1), respectively. A peak due to the amino groups (-NH2) was evident. This suggested the formation of an evaporation, in which TRT interacted with AA or AA2G. In the dissolution test, the dissolved fraction of TRT alone after 3 min was 30%, whereas the fractions were enhanced to approximately 90% for EVP1 (AA/TRT = 1/1) and EVP2 (AA2G/TRT= 1/1). Results confirmed that dissolution properties were improved as a result of complex formation. The above findings indicated improvement the dissolution properties of TRT.


Asunto(s)
Ácido Ascórbico , Triantereno , Rastreo Diferencial de Calorimetría , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
8.
Pharmaceutics ; 12(9)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854439

RESUMEN

In recent years, the world has faced the issue of antibiotic resistance. Methicillin-resistant Staphylococcus aureus (MRSA) is a significant problem in various treatments and control of infections. Biocompatible materials with saturated fatty acids of different chain lengths (C8-C18) were studied as matrix formers of localized injectable vancomycin HCl (VCM)-loaded antisolvent-induced in situ forming matrices. The series of fatty acid-based in situ forming matrices showed a low viscosity (5.47-13.97 cPs) and pH value in the range of 5.16-6.78, with high injectability through a 27-G needle (1.55-3.12 N). The preparations exhibited low tolerance to high concentrations of KH2PO4 solution (1.88-5.42% v/v) and depicted an electrical potential change during phase transformation. Their phase transition and matrix formation at the microscopic and macroscopic levels depended on the chain length of fatty acids and solvent characteristics. The VCM release pattern depended on the nucleation/crystallization and solvent exchange behaviors of the delivery system. The 35% w/v of C12-C16 fatty acid-based in situ forming matrix prolonged the VCM release over seven days in which C12, C14, C16 -based formulation reached 56, 84, and 85% cumulative drug release at 7th day. The release data fitted well with Higuchi's model. The developed formulations presented efficient antimicrobial activities against standard S. aureus, MRSA, Escherichia coli, and Candida albicans. Hence, VCM-loaded antisolvent-induced fatty acid-based in situ forming matrix is a potential local delivery system for the treatment of local Gram-positive infection sites, such as joints, eyes, dermis of surgery sites, etc., in the future.

9.
Mater Sci Eng C Mater Biol Appl ; 115: 110761, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32600673

RESUMEN

Knee joint infection following total knee arthroplasty (TKA) is a serious condition and the treatments are complicated. The intra-articular solvent exchange-induced in situ forming matrix is of interest for modulating the release of antibiotics with a high drug concentration and a long period of exposed time at the target site. Stearic acid (S) and lauric acid (L) at various ratios were used as matrix formers by dissolving them in biocompatible solvents such as N-methyl pyrrolidone (NMP) and dimethyl sulfoxide (DMSO). Their matrix formation behaviors in phosphate buffer (pH7.4) and hyaluronic acid (HA) solution were evaluated. Also, the density, viscosity, injectability, solvent diffusion, in vitro degradability and drug release using the dialysis tube method were investigated. The L:S ratio of 1:1 in DMSO exhibited rapid matrix formation and a remarkably low viscosity (7.67±0.03 cp) with acceptable injectability (0.608±0.027N and 0.867±0.010N through 18-G and 27-G, respectively). Vancomycin HCl (V)-loaded L/S in situ forming matrix still provided ease of injection (1.079±0.215N and 1.230±0.145N through 18-G and 27-G needle, respectively) with fatty acid matrix formation after solvent exchange within 1min, whilst V sustainably released over 6days. It also presented effective antimicrobial activities against standard Staphylococcus aureus and methicillin-resistant Staphylococcus aureus strains. Therefore, V-loaded solvent exchange-induced in situ forming matrix using L and S as the matrix formers may be a potential local delivery system for treating knee joint infections occurring after TKA in the future.


Asunto(s)
Prótesis de la Rodilla/microbiología , Ácidos Láuricos/química , Infecciones Relacionadas con Prótesis/prevención & control , Staphylococcus aureus/efectos de los fármacos , Ácidos Esteáricos/química , Vancomicina/farmacología , Artroplastia de Reemplazo de Rodilla/efectos adversos , Dimetilsulfóxido/química , Liberación de Fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Pirrolidinonas/química , Solventes/química , Staphylococcus aureus/crecimiento & desarrollo , Vancomicina/química , Viscosidad
10.
Enzyme Microb Technol ; 116: 72-76, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29887020

RESUMEN

A novel kinetic method was developed for the quantitation of α-ketoglutaric acid (AKG) in cardioplegic solution and athletic supplements. The assay relied on an enzymatic transamination of AKG and d-4-hydroxyphenylglycine to form 4-hydroxybenzoylformic acid and l-glutamic acid using d-phenylglycine aminotransferase. Since 4-hydroxybenzoylformic acid absorbed UV strongly at 334 nm, the initial rate of the reaction was determined by the increasing absorbance at this wavelength without the need for colorimetric probes or coupling reactions, and this information was used for the construction of a standard curve against AKG concentration. The method showed good linearity (r2 = 0.9994) over an AKG concentration range of 20-160 µM. The limits of detection and quantitation were 4.09 and 13.62 µM respectively. It was simple, inexpensive, accurate and precise, as well as repeatable, and was not interfered with by excipients in the samples. Regarding the environmental friendliness, the method was free from the use of organic solvents or hazardous reagents and required no chemical pre-treatment of samples. The proposed method gave assay results tested in real samples in agreement with the HPLC method and commercial assay kits, therefore being suitable for routine analysis of AKG in quality control laboratories.


Asunto(s)
Soluciones Cardiopléjicas/análisis , Suplementos Dietéticos/análisis , Pruebas de Enzimas/métodos , Ácidos Cetoglutáricos/análisis , Transaminasas/química , Pruebas de Enzimas/economía , Cinética
11.
Asian J Pharm Sci ; 13(2): 131-142, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32104386

RESUMEN

Solvent exchange induced in situ forming gel (ISG) is the promising drug delivery system for periodontitis treatment owing to the prospect of maintaining an effective high drug level in the gingival crevicular fluid. In the present study, the influence of clove oil (CO) on the characteristics of doxycycline hyclate (DH)-loaded ISG comprising Eudragit RS (ERS) was investigated including viscosity/rheology, syringeability, in vitro gel formation/drug release, matrix formation/solvent diffusion and antimicrobial activities. CO could dissolve ERS and increase the viscosity of ISG and its hydrophobicity could also retard the diffusion of solvent and hinder the drug diffusion; thus, the minimization of burst effect and sustained drug release were achieved effectively. All the prepared ISGs comprising CO could expel through the 27-gauge needle for administration by injection and transform into matrix depot after exposure to the simulated gingival crevicular fluid. The antimicrobial activities against Staphylococcus aureus, Escherichia coli, Streptococcus mutans and Porphyromonas gingivalis were increased when the ratio of CO and N-methyl pyrrolidone (NMP) was decreased from 1:1 to 1:10 owing to higher diffusion of DH except that for C. albicans was increased as CO amount was higher. Therefore, CO could minimize the burst while prolonging the drug release of DH-loaded ERS ISG for use as a local drug delivery system for periodontitis treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA