Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 9: 734176, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513848

RESUMEN

Hematopoietic stem cells (HSCs) are defined by their self-renewal, multipotency, and bone marrow (BM) engraftment abilities. How HSCs emerge during embryonic development remains unclear, but are thought to arise from hemogenic endothelium through an intermediate precursor called "pre-HSCs." Pre-HSCs have self-renewal and multipotent activity, but lack BM engraftability. They can be identified functionally by transplantation into neonatal recipients, or by in vitro co-culture with cytokines and stroma followed by transplantation into adult recipients. While pre-HSCs express markers such as Kit and CD144, a precise surface marker identity for pre-HSCs has remained elusive due to the fluctuating expression of common HSC markers during embryonic development. We have previously determined that the lack of CD11a expression distinguishes HSCs in adults as well as multipotent progenitors in the embryo. Here, we use a neonatal transplantation assay to identify pre-HSC populations in the mouse embryo. We establish CD11a as a critical marker for the identification and enrichment of pre-HSCs in day 10.5 and 11.5 mouse embryos. Our proposed pre-HSC population, termed "11a- eKLS" (CD11a- Ter119- CD43+ Kit+ Sca1+ CD144+), contains all in vivo long-term engrafting embryonic progenitors. This population also displays a cell-cycle status expected of embryonic HSC precursors. Furthermore, we identify the neonatal liver as the likely source of signals that can mature pre-HSCs into BM-engraftable HSCs.

2.
Stem Cells Transl Med ; 7(6): 468-476, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29543389

RESUMEN

Hematopoietic stem cells (HSCs) are the self-renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, endothelial protein C receptor (EPCR), can be used to effectively identify and purify HSCs. We introduce a new two-color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist's toolkit improves the purity of and simplifies isolation of HSCs. Stem Cells Translational Medicine 2018;7:468-476.


Asunto(s)
Biomarcadores/metabolismo , Antígeno CD11a/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células Madre Hematopoyéticas/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Citometría de Flujo/métodos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Poli I-C/toxicidad
3.
Stem Cell Reports ; 3(5): 707-15, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25418718

RESUMEN

Small numbers of hematopoietic stem cells (HSCs) generate large numbers of mature effector cells through the successive amplification of transiently proliferating progenitor cells. HSCs and their downstream progenitors have been extensively characterized based on their cell-surface phenotype and functional activities during transplantation assays. These cells dynamically lose and acquire specific sets of surface markers during differentiation, leading to the identification of markers that allow for more refined separation of HSCs from early hematopoietic progenitors. Here, we describe a marker, CD11A, which allows for the enhanced purification of mouse HSCs. We show through in vivo transplantations that upregulation of CD11A on HSCs denotes the loss of their long-term reconstitution potential. Surprisingly, nearly half of phenotypic HSCs (defined as Lin-KIT(+)SCA-1(+)CD150(+)CD34-) are CD11A(+) and lack long-term self-renewal potential. We propose that CD11A(+)Lin-KIT(+)SCA-1(+)CD150(+)CD34- cells are multipotent progenitors and CD11A-Lin-KIT(+)SCA-1(+)CD150(+)CD34- cells are true HSCs.


Asunto(s)
Antígeno CD11a/metabolismo , Diferenciación Celular , Proliferación Celular , Células Madre Hematopoyéticas/metabolismo , Regulación hacia Arriba , Animales , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Antígenos Ly/metabolismo , Antígeno CD11a/genética , Citometría de Flujo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores de Superficie Celular/metabolismo , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria
4.
PLoS One ; 6(7): e22256, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799806

RESUMEN

C17 was first described about ten years ago as a gene expressed in CD34+ cells. A more recent study has suggested a role for C17 in chondrogenesis and development of cartilage. However, based on sequence analysis, we believe that C17 has homology to IL-2 and hence we present the hypothesis that C17 is a cytokine possessing immune-regulatory properties. We provide evidence that C17 is a secreted protein preferentially expressed in chondrocytes, hence in cartilage-rich tissues. Systemic expression of C17 in vivo reduces disease in a collagen antibody-induced arthritis model in mice (CAIA). Joint protection is evident by delayed disease onset, minimal edema, bone protection and absence of diverse histological features of disease. Expression of genes typically associated with acute joint inflammation and erosion of cartilage or bone is blunted in the presence of C17. Consistent with the observed reduction in bone erosion, we demonstrate reduced levels of RANKL in the paws and sera of mice over-expressing C17. Administration of C17 at the peak of disease, however, had no effect on disease progression, indicating that C17's immune-regulatory activity must be most prominent prior to or at the onset of severe joint inflammation. Based on this data we propose C17 as a cytokine that s contributes to immune homeostasis systemically or in a tissue-specific manner in the joint.


Asunto(s)
Artritis/metabolismo , Proteínas Sanguíneas/metabolismo , Citocinas/metabolismo , Articulaciones/metabolismo , Articulaciones/patología , Secuencia de Aminoácidos , Animales , Artritis/inmunología , Artritis/patología , Artritis/terapia , Biomarcadores/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Enfermedades Óseas/complicaciones , Enfermedades Óseas/metabolismo , Cartílago/metabolismo , Condrocitos/metabolismo , Citocinas/química , Citocinas/genética , Regulación de la Expresión Génica , Células HEK293 , Homeostasis/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Inflamación/terapia , Articulaciones/inmunología , Masculino , Ratones , Datos de Secuencia Molecular , Ligando RANK/sangre
5.
Nat Cell Biol ; 12(10): 993-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20818388

RESUMEN

Mammalian ageing is accompanied by accumulation of genomic DNA damage and progressive decline in the ability of tissues to regenerate. DNA damage activates the tumour suppressor p53, which leads to cell-cycle arrest, senescence or apoptosis. The stability and activity of p53 are induced by DNA damage through posttranslational modifications such as phosphorylation of Thr 21 and Ser 23 (refs 2, 3, 4, 5). To investigate the roles of DNA damage and p53 in tissue-regenerative capability, two phosphorylation-site mutations (T21D and S23D) were introduced into the endogenous p53 gene in mice, so that the synthesized protein mimics phosphorylated p53. The knock-in mice exhibit constitutive p53 activation and segmental progeria that is correlated with the depletion of adult stem cells in multiple tissues, including bone marrow, brain and testes. Furthermore, a deficiency of Puma, which is required for p53-dependent apoptosis after DNA damage, rescues segmental progeria and prevents the depletion of adult stem cells. These findings suggest a key role of p53-dependent apoptosis in depleting adult stem cells after the accumulation of DNA damage, which leads to a decrease in tissue regeneration.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/deficiencia , Células Cultivadas , Daño del ADN , Masculino , Ratones , Neuronas/citología , Fenotipo , Progeria/metabolismo , Testículo/patología , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/deficiencia
6.
Cell Cycle ; 6(12): 1412-4, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17581277

RESUMEN

Tumor suppressor p53 is required for the neuronal apoptosis in response to DNA double-stranded break (DSB) damage. Posttranslational modifications such as phosphorylation play important roles in activating p53-dependent apoptosis after DNA damage. In support of this notion, our recent studies indicate that Ser18 and Ser23 phosphorylation together plays critical roles in activating p53 apoptotic activities in vivo. Thymocytes derived from p53(S18/23A) mice are essentially resistant to p53-dependent apoptosis after DNA DSB damage. In addition, identical to p53-deficiency, p53(S18/23A) knock-in mutation completely rescues the embryonic lethality of XRCC4(-/-) mice, which die of the massive p53-dependent apoptosis of embryonic neurons likely as a result of accumulated endogenous DNA damage. To dissect the contribution of Ser18 and Ser23 phosphorylation to p53-dependent neuronal apoptosis, we report here that neither p53(S18A) nor p53(S23A) mutation alone can rescue the embryonic lethality of XRCC4(-/-) mice. Therefore, Ser18 and Ser23 phosphorylation plays synergistic and critical roles in activating p53-dependent neuronal apoptosis.


Asunto(s)
Apoptosis/fisiología , Roturas del ADN de Doble Cadena , Neuronas/citología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas de Unión al ADN/genética , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , Serina/metabolismo , Proteína p53 Supresora de Tumor/genética
7.
Chin Med J (Engl) ; 120(23): 2112-8, 2007 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18167185

RESUMEN

BACKGROUND: Histone deacetylase inhibitors (HDACIs) have been reported to induce apoptosis in cancer cells. The effects of trichostatin A (TSA) on gastric cancer cells have not been well characterized. This study was aimed to explore the effects and mechanisms of TSA on human gastric cancer SGC-7901 cells. METHODS: The cells were treated with TSA and analyzed by cell proliferation assay, Western blot, TUNEL assay, flow cytometry by fluorescein isothiocyanate (FITC) conjugated with Annexin V and PI staining, immunofluorescence analysis, analysis of subcellular fractionation, gene chips and real time polymerase chain reaction (PCR). RESULTS: TSA could inhibit cell growth and induced apoptosis in gastric cancer SGC-7901 cells through the regulation of apoptosis-related genes, such as Bcl-2, Bax and survivin. Further study indicated that the pan-caspase inhibitor z-VAD-fmk did not inhibit the apoptosis induced by TSA, and we did not observe the cleavage of poly ADP ribose polymerase (PARP) after TSA treatment too. In addition, apoptosis inducing factor (AIF) and EndoG were found to translocate from mitochondria to nucleus in the immunofluorescence assay and the Western analysis of subcellular fractionation confirmed the result of immunofluorescence assay. CONCLUSIONS: The apoptosis induced by TSA in gastric cancer SGC-7901 cells involves a caspase-independent pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/fisiología , Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Proteínas Inhibidoras de la Apoptosis , Proteínas Asociadas a Microtúbulos/análisis , Proteínas de Neoplasias/análisis , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Neoplasias Gástricas/patología , Survivin , Proteína p53 Supresora de Tumor/análisis , Proteína p53 Supresora de Tumor/fisiología , Proteína X Asociada a bcl-2/análisis
8.
Mol Cell Biol ; 26(18): 6859-69, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16943427

RESUMEN

Posttranslational modifications of p53, including phosphorylation and acetylation, play important roles in regulating p53 stability and activity. Mouse p53 is acetylated at lysine 317 by PCAF and at multiple lysine residues at the extreme carboxyl terminus by CBP/p300 in response to genotoxic and some nongenotoxic stresses. To determine the physiological roles of p53 acetylation at lysine 317, we introduced a Lys317-to-Arg (K317R) missense mutation into the endogenous p53 gene of mice. p53 protein accumulates to normal levels in p53(K317R) mouse embryonic fibroblasts (MEFs) and thymocytes after DNA damage. While p53-dependent gene expression is largely normal in p53(K317R) MEFs after various types of DNA damage, increased p53-dependent apoptosis was observed in p53(K317R) thymocytes, epithelial cells from the small intestine, and cells from the retina after ionizing radiation (IR) as well as in E1A/Ras-expressing MEFs after doxorubicin treatment. Consistent with these findings, p53-dependent expression of several proapoptotic genes was significantly increased in p53(K317R) thymocytes after IR. These findings demonstrate that acetylation at lysine 317 negatively regulates p53 apoptotic activities after DNA damage.


Asunto(s)
Apoptosis , Daño del ADN , Lisina/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Proteínas E1A de Adenovirus/metabolismo , Animales , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/efectos de la radiación , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Intestino Delgado/citología , Intestino Delgado/efectos de la radiación , Ratones , Ratones Mutantes , Análisis por Micromatrices , Proteínas Mutantes/metabolismo , Proteína Oncogénica p21(ras)/metabolismo , Radiación Ionizante , Retina/citología , Retina/efectos de la radiación , Termodinámica , Timo/citología , Timo/efectos de la radiación
9.
EMBO J ; 25(11): 2615-22, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16757976

RESUMEN

Mouse p53 is phosphorylated at Ser18 and Ser23 after DNA damage. To determine whether these two phosphorylation events have synergistic functions in activating p53 responses, we simultaneously introduced Ser18/23 to Ala mutations into the endogenous p53 locus in mice. While partial defects in apoptosis are observed in p53S18A and p53S23A thymocytes exposed to IR, p53-dependent apoptosis is essentially abolished in p53S18/23A thymocytes, indicating that these two events have critical and synergistic roles in activating p53-dependent apoptosis. In addition, p53S18/23A, but not p53S18A, could completely rescue embryonic lethality of Xrcc4(-/-) mice that is caused by massive p53-dependent neuronal apoptosis. However, certain p53-dependent functions, including G1/S checkpoint and cellular senescence, are partially retained in p53(S18/23A) cells. While p53(S18A) mice are not cancer prone, p53S18/23A mice developed a spectrum of malignancies distinct from p53S23A and p53(-/-) mice. Interestingly, Xrcc4(-/-)p53S18/23A mice fail to develop tumors like the pro-B cell lymphomas uniformly developed in Xrcc4(-/-) p53(-/-) animals, but exhibit developmental defects typical of accelerated ageing. Therefore, Ser18 and Ser23 phosphorylation is important for p53-dependent suppression of tumorigenesis in certain physiological context.


Asunto(s)
Apoptosis/fisiología , Neoplasias/metabolismo , Serina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/patología , Embrión de Mamíferos/fisiología , Masculino , Ratones , Ratones Noqueados , Mutación , Neoplasias/genética , Neoplasias/patología , Fosforilación , Tasa de Supervivencia , Timo/citología , Proteína p53 Supresora de Tumor/genética
10.
Nat Cell Biol ; 7(2): 165-71, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15619621

RESUMEN

The tumour suppressor p53 becomes activated in response to upstream stress signals, such as DNA damage, and causes cell-cycle arrest or apoptosis. Here we report a novel role for p53 in the differentiation of mouse embryonic stem cells (ESCs). p53 binds to the promoter of Nanog, a gene required for ESC self-renewal, and suppresses Nanog expression after DNA damage. The rapid down-regulation of Nanog mRNA during ESC differentiation correlates with the induction of p53 transcriptional activity and Ser 315 phosphorylation. The importance of Ser 315 phosphorylation was revealed by the finding that induction of p53 activity is impaired in p53(S315A) knock-in ESCs during differentiation, leading to inefficient suppression of Nanog expression. The decreased inhibition of Nanog expression in p53(S315A) ESCs during differentiation is due to an impaired recruitment of the co-repressor mSin3a to the Nanog promoter. These findings indicate an alternative mechanism for p53 to maintain genetic stability in ESCs, by inducing the differentiation of ESCs into other cell types that undergo efficient p53-dependent cell-cycle arrest and apoptosis.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Células Madre/citología , Proteína p53 Supresora de Tumor/fisiología , Animales , Regulación hacia Abajo , Embrión de Mamíferos/citología , Regulación de la Expresión Génica , Ratones , Proteína Homeótica Nanog , Fosforilación , Regiones Promotoras Genéticas , Tretinoina
11.
J Biol Chem ; 278(42): 41028-33, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-12909629

RESUMEN

Phosphorylation of mouse p53 at Ser18 occurs after DNA damage. To determine the physiological roles of this phosphorylation event in p53-dependent DNA damage responses, a Ser18 to Ala missense mutation was introduced into the germline of mice. Thymocytes and fibroblasts from the knock-in mice show reduced transactivation of many p53 target genes following DNA damage. p53 protein stabilization and DNA binding are similar in knock-in and wild type mice, but C-terminal acetylation was defective, consistent with a role for Ser18 in the recruitment of transcriptional co-activators. The apoptotic response of knock-in thymocytes to ionizing radiation is intermediate between that of wild type and p53 null thymocytes. Despite impaired transcriptional and apoptotic responses, the knock-in mice are not prone to spontaneous tumorigenesis. This indicates that neither phosphorylation of p53 on Ser18 by ATM nor a full transcriptional response is essential to prevent spontaneous tumor formation in mice.


Asunto(s)
Regiones Promotoras Genéticas , Serina/química , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Pruebas de Precipitina , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina/metabolismo , Timo/citología , Timo/metabolismo , Factores de Tiempo , Transcripción Genética , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor , Rayos Ultravioleta
12.
J Biol Chem ; 278(39): 37536-44, 2003 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12860987

RESUMEN

Modification-specific antibodies were used to characterize the phosphorylation and acetylation of human p53 in response to genotoxic (UV, IR, and adriamycin) and non-genotoxic (PALA, taxol, nocodazole) stress in cultured human cells at 14 known modification sites. In A549 cells, phosphorylation or acetylation was induced at most sites by the three DNA damage-inducing agents, but significant differences between agents were observed. IR-induced phosphorylation reached a maximum 2 h after treatment and returned to near pretreatment levels by 72 h; UV light and adriamycin induced a less rapid but more robust and prolonged p53 phosphorylation, which reached a maximum between 8 and 24 h, but persisted (UV) even 96 h after treatment. Ser33, Ser37, Ser46, and Ser392 were more efficiently phosphorylated after exposure to UV light than after IR. The non-genotoxic agents PALA, taxol and nocodazole induced p53 accumulation and phosphorylation at Ser6, Ser33, Ser46, and Ser392. Some phosphorylation at Ser15 also was observed. Modifications occurred similarly in the HCT116 human colon carcinoma cell line. Analysis of single site mutant p53s indicated clear interdependences between N-terminal phosphorylation sites, which could be classified in four clusters: Ser6 and Ser9; Ser9, Ser15, Thr18 and Ser20; Ser33 and Ser37; and Ser46. We suggest that p53 phosphorylation is regulated through a double cascade involving both the activation of secondary, effector protein kinases as well as intermolecular phosphorylation site interdependencies that check inappropriate p53 inactivation while allowing for signal amplification and the integration of signals from multiple stress pathways.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/química , Animales , Daño del ADN , Doxorrubicina/toxicidad , Humanos , Fosforilación , Proteína p53 Supresora de Tumor/biosíntesis , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...