Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLOS Glob Public Health ; 3(12): e0002247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055687

RESUMEN

Antimicrobial resistance (AMR) is a major global public health concern, particularly in low- and middle-income countries, which experience the highest burden of AMR. Critical to combatting AMR is ensuring there are effective, accessible diagnostic networks in place to diagnose, monitor and prevent AMR, but many low- and middle-income countries lack such networks. Consequently, there is substantial need for approaches that can inform the design of efficient AMR laboratory networks and sample referral systems in lower-resource countries. Diagnostic network optimization (DNO) is a geospatial network analytics approach to plan diagnostic networks and ensure greatest access to and coverage of services, while maximizing the overall efficiency of the system. In this intervention, DNO was applied to strengthen bacteriology and AMR surveillance network design in Kenya and Nepal for human and animal health, by informing linkages between health facilities and bacteriology testing services and sample referral routes between farms, health facilities and laboratories. Data collected from the target settings in each country were entered into the open-access DNO tool OptiDx, to generate baseline scenarios, which depicted the current state of AMR laboratory networks and sample referral systems in the countries. Subsequently, baselines were adjusted to evaluate changing factors such as samples flows, transport frequency, transport costs, and service distances. Country stakeholders then compared resulting future scenarios to identify the most feasible solution for their context. The DNO analyses enabled a wealth of insights that will facilitate strengthening of AMR laboratory and surveillance networks in both countries. Overall, the project highlights the benefits of using a data-driven approach for designing efficient diagnostic networks, to ensure better health resource allocation while maximizing the impact and equity of health interventions. Given the critical need to strengthen AMR laboratory and surveillance capacity, DNO should be considered an integral part of diagnostic strategic planning in the future.

2.
Trop Med Infect Dis ; 8(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37368709

RESUMEN

Antimicrobial resistance (AMR) is increasing and represents one of the greatest public health challenges of our time, accounting for considerable morbidity and mortality globally. A "One Health" surveillance strategy, which integrates data concerning the resistant organisms circulating in humans, animals, and the environment, is required to monitor this issue and enable effective interventions. The timely collection, processing, analysis, and reporting of AMR surveillance data are necessary for the effective delivery of the information generated from such surveillance. Nepal has greatly improved its surveillance activities through a network of human and animal health laboratories; however, the data reported by sentinel laboratories are often inconsistent, incomplete, and delayed, causing challenges in terms of data cleaning, standardization, and visualization on a national level. To overcome these issues, innovative methods and procedures have been adopted in Nepal, with the development and customization of digital tools that reduce the human time and effort spent on data cleaning and standardization, with concomitant improvements in the accuracy of data. These standardized data can be uploaded to the district health information system 2 (DHIS2) One Health AMR surveillance portal, enabling the generation of reports that will help decision-makers and policy planners to combat the global problem of AMR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA