Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Pharmacokinet ; 63(5): 561-588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38748090

RESUMEN

Human milk is a remarkable biofluid that provides essential nutrients and immune protection to newborns. Breastfeeding women consuming medications could pass the drug through their milk to neonates. Drugs can be transferred to human milk by passive diffusion or active transport. The physicochemical properties of the drug largely impact the extent of drug transfer into human milk. A comprehensive understanding of the physiology of human milk formation, composition of milk, mechanisms of drug transfer, and factors influencing drug transfer into human milk is critical for appropriate selection and use of medications in lactating women. Quantification of drugs in the milk is essential for assessing the safety of pharmacotherapy during lactation. This can be achieved by developing specific, sensitive, and reproducible analytical methods using techniques such as liquid chromatography coupled with mass spectrometry. The present review briefly discusses the physiology of human milk formation, composition of human milk, mechanisms of drug transfer into human milk, and factors influencing transfer of drugs from blood to milk. We further expand upon and critically evaluate the existing analytical approaches/assays used for the quantification of drugs in human milk.


Asunto(s)
Leche Humana , Humanos , Leche Humana/química , Leche Humana/metabolismo , Preparaciones Farmacéuticas/metabolismo , Femenino , Lactancia/metabolismo , Lactancia Materna , Recién Nacido , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos
2.
Xenobiotica ; 53(3): 193-200, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37039113

RESUMEN

Weekly intramuscular (250 mg/week) or subcutaneous (275 mg/week) injections of 17-hydroxyprogesterone caproate (17-OHPC) is the only treatment option for the prevention of preterm birth in women with a prior history of preterm delivery.The objective of the current study was to determine the relative distribution of 17-OHPC in selected tissues in adult female SD rats after IM (oily formulation or solution), IV (solution), PO (solution), or intravaginal (suppository) administration.Plasma, uterus, adipose, and liver samples were collected at various times and analysed by LC-MS-MS.The highest concentrations of 17-OHPC were observed in the adipose tissue, after IM (oily formulation), and intravaginal administration.Substantial concentrations of 17-OHPC were also observed in the uterus after IM, intravaginal and IV administration.17-OHPC was not detected in the liver and in any of the tissues tested after PO administration.17-OHPC levels in plasma after intravaginal suppository administration were low despite substantial concentrations in the adipose and the uterus.The distribution of 17-OHPC depends on the formulation, the route of administration, and the sampling time.Low systemic concentrations and substantial distribution in the tissues of interest after intravaginal administration warrants future studies to evaluate the potential of the daily intravaginal route of administration of 17-OHPC.


Asunto(s)
Hidroxiprogesteronas , Nacimiento Prematuro , Recién Nacido , Humanos , Femenino , Ratas , Animales , Caproato de 17 alfa-Hidroxiprogesterona , 17-alfa-Hidroxiprogesterona , Nacimiento Prematuro/prevención & control , Ratas Sprague-Dawley
3.
Artículo en Inglés | MEDLINE | ID: mdl-33619060

RESUMEN

Isavuconazole (ISA) is an azole antifungal used in the treatment of invasive aspergillosis and mucormycosis. Patients with mild and moderate hepatic impairment have lower clearance (CL) as compared to the healthy population. Currently, there is no data on ISA in patients with severe hepatic impairment (Child-Pugh Class C). The purpose of this study was to build a physiologically based pharmacokinetic (PBPK) model to describe the pharmacokinetics (PK) of intravenous ISA, and to predict changes in ISA disposition in different patient populations and in patients with hepatic impairment to guide personalized dosing. By incorporating the systemic and drug specific parameters of ISA, the model was initially developed in healthy population and validated with 10 independent PK profiles obtained from healthy subjects and from patients with normal liver function. The results showed a satisfactory predictive capacity, with most of the relative predictive errors being between ±30% for area under the curve (AUC) and Cmax The observed plasma concentration-time profiles of ISA were well described by the model predicted profiles. The model adequately predicted the reduced CL of ISA in patients with mild and moderate hepatic impairment. Furthermore, the model predicted a decrease in CL of about 60% in patients with severe hepatic impairment. Therefore, we recommend reducing the dose by 50% in patients with severe hepatic impairment. The model also predicted differences in the PK of ISA between Caucasian and Asian population, with the CL ratio of 0.67 in Chinese vs Caucasian population. The developed PBPK model of ISA provides a reasonable approach for optimizing the dosage regimen in different ethnic populations and in patients with severe hepatic impairment.

4.
Front Pharmacol ; 13: 835037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873594

RESUMEN

Objective: Busulfan (BU) is a bi-functional DNA-alkylating agent used in patients undergoing hematopoietic stem cell transplantation (HSCT). Over the last decades, several population pharmacokinetic (pop PK) models of BU have been established, but external evaluation has not been performed for almost all models. The purpose of the study was to evaluate the predictive performance of published pop PK models of intravenous BU in adults using an independent dataset from Chinese HSCT patients, and to identify the best model to guide personalized dosing. Methods: The external evaluation methods included prediction-based diagnostics, simulation-based diagnostics, and Bayesian forecasting. In prediction-based diagnostics, the relative prediction error (PE%) was calculated by comparing the population predicted concentration (PRED) with the observations. Simulation-based diagnostics included the prediction- and variability-corrected visual predictive check (pvcVPC) and the normalized prediction distribution error (NPDE). Bayesian forecasting was executed by giving prior one to four observations. The factors influencing the model predictability, including the impact of structural models, were assessed. Results: A total of 440 concentrations (110 patients) were obtained for analysis. Based on prediction-based diagnostics and Bayesian forecasting, preferable predictive performance was observed in the model developed by Huang et al. The median PE% was -1.44% which was closest to 0, and the maximum F20 of 57.27% and F30 of 72.73% were achieved. Bayesian forecasting demonstrated that prior concentrations remarkably improved the prediction precision and accuracy of all models, even with only one prior concentration. Conclusion: This is the first study to comprehensively evaluate published pop PK models of BU. The model built by Huang et al. had satisfactory predictive performance, which can be used to guide individualized dosage adjustment of BU in Chinese patients.

5.
Eur J Clin Pharmacol ; 78(9): 1447-1457, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35764817

RESUMEN

OBJECTIVES: Patients with hematological malignancies are prone to invasive fungal disease due to long-term chemotherapy or radiotherapy. Voriconazole is a second-generation triazole broad-spectrum antibiotic used to prevent or treat invasive fungal infections. Many population pharmacokinetic (pop PK) models have been published for voriconazole, and various diagnostic methods are available to validate the performance of these pop PK models. However, most of the published models have not been strictly evaluated externally. The purpose of this study is to evaluate these models externally and assess their predictive capabilities. METHODS: The external dataset consists of adults receiving voriconazole treatment at Fujian Medical University Union Hospital. We re-established the published models based on their final estimated values in the literature and used our external dataset for initial screening. Each model was evaluated based on the following outcomes: prediction-based diagnostics, prediction- and variability-corrected visual predictive check (pvcVPC), normalized prediction distribution errors (NPDE), and Bayesian simulation results with one to two prior observations. RESULTS: A total of 237 samples from 166 patients were collected as an external dataset. After screening, six candidate models suitable for the external dataset were finally obtained for comparison. Among the models, none demonstrated excellent predictive performance. Bayesian simulation shows that all models' prediction precision and accuracy were significantly improved when one or two prior concentrations were given. CONCLUSIONS: The published pop PK models of voriconazole have significant differences in prediction performance, and none of the models could perfectly predict the concentrations of voriconazole for our data. Therefore, extensive evaluation should precede the adoption of any model in clinical practice.


Asunto(s)
Neoplasias Hematológicas , Triazoles , Adulto , Antifúngicos/farmacocinética , Antifúngicos/uso terapéutico , Teorema de Bayes , China , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Modelos Biológicos , Triazoles/uso terapéutico , Voriconazol/uso terapéutico
6.
Front Pediatr ; 9: 733823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805038

RESUMEN

Pregnancy and the postpartum period are associated with several physiological changes that can alter the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. For certain drugs, dosing changes may be required during pregnancy and postpartum to achieve drug exposures comparable to what is observed in non-pregnant subjects. There is very limited data on fetal exposure of drugs during pregnancy, and neonatal exposure through transfer of drugs via human milk during breastfeeding. Very few systematic clinical pharmacology studies have been conducted in pregnant and postpartum women due to ethical issues, concern for the fetus safety as well as potential legal ramifications. Over the past several years, there has been an increase in the application of modeling and simulation approaches such as population PK (PopPK) and physiologically based PK (PBPK) modeling to provide guidance on drug dosing in those special patient populations. Population PK models rely on measured PK data, whereas physiologically based PK models incorporate physiological, preclinical, and clinical data into the model to predict drug exposure during pregnancy. These modeling strategies offer a promising approach to identify the drugs with PK changes during pregnancy to guide dose optimization in pregnancy, when there is lack of clinical data. PBPK modeling is also utilized to predict the fetal exposure of drugs and drug transfer via human milk following maternal exposure. This review focuses on the current status of the application of PBPK modeling to predict maternal and fetal exposure of drugs and thereby guide drug therapy during pregnancy.

7.
J Clin Pharmacol ; 60 Suppl 1: S63-S76, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33205432

RESUMEN

Pregnancy is associated with several physiological changes that can alter the pharmacokinetics (PK) and pharmacodynamics of drugs. These may require dosing changes in pregnant women to achieve drug exposures comparable to the nonpregnant population. There is, however, limited information available on the PK and pharmacodynamics of drugs used during pregnancy. Practical difficulties in performing PK studies and potential liability issues are often the reasons for the availability of limited information. Over the past several years, there has been a rapid development in the application of various modeling strategies such as population PK and physiologically based PK modeling to provide guidance on drug dosing in this special patient population. Population PK models rely on measured PK data, whereas physiologically based PK models integrate physiological, preclinical, and clinical data to quantify changes in PK of drugs in various patient populations. These modeling strategies offer a promising approach to identify the drugs with PK changes during pregnancy and guide dose adjustment in pregnant women. This review focuses on PBPK modeling to guide drug therpay in pregnancy.


Asunto(s)
Relación Dosis-Respuesta a Droga , Modelos Biológicos , Farmacocinética , Simulación por Computador , Femenino , Humanos , Intercambio Materno-Fetal , Preparaciones Farmacéuticas/metabolismo , Embarazo , Complicaciones del Embarazo
8.
Cancer Chemother Pharmacol ; 86(5): 633-640, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32989483

RESUMEN

PURPOSE: To investigate the metabolic pathways of triapine in primary cultures of human hepatocytes and human hepatic subcellular fractions; to investigate interactions of triapine with tenofovir and emtricitabine; and to evaluate triapine as a perpetrator of drug interactions. The results will better inform future clinical studies of triapine, a radiation sensitizer currently being studied in a phase III study. METHODS: Triapine was incubated with human hepatocytes and subcellular fractions in the presence of a number of inhibitors of drug metabolizing enzymes. Triapine depletion was monitored by LC-MS/MS. Tenofovir and emtricitabine were co-incubated with triapine in primary cultures of human hepatocytes. Triapine was incubated with a CYP probe cocktail and human liver microsomes, followed by LC-MS/MS monitoring of CYP specific metabolite formation. RESULTS: Triapine was not metabolized by FMO, AO/XO, MAO-A/B, or NAT-1/2, but was metabolized by CYP450s. CYP1A2 accounted for most of the depletion of triapine. Tenofovir and emtricitabine did not alter triapine depletion. Triapine reduced CYP1A2 activity and increased CYP2C19 activity. CONCLUSION: CYP1A2 metabolism is the major metabolic pathway for triapine. Triapine may be evaluated in cancer patients in the setting of HIV with emtricitabine or tenofovir treatment. Confirmatory clinical trials may further define the in vivo triapine metabolic fate and quantify any drug-drug interactions.


Asunto(s)
Inhibidores del Citocromo P-450 CYP1A2/farmacocinética , Inductores del Citocromo P-450 CYP2C19/farmacocinética , Neoplasias/terapia , Piridinas/farmacocinética , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Tiosemicarbazonas/farmacocinética , Células Cultivadas , Quimioradioterapia/métodos , Cromatografía Líquida de Alta Presión , Citocromo P-450 CYP1A2/metabolismo , Inhibidores del Citocromo P-450 CYP1A2/uso terapéutico , Citocromo P-450 CYP2C19/metabolismo , Inductores del Citocromo P-450 CYP2C19/uso terapéutico , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Emtricitabina/farmacocinética , Hepatocitos , Humanos , Inactivación Metabólica , Microsomas Hepáticos , Cultivo Primario de Células , Piridinas/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Espectrometría de Masas en Tándem , Tenofovir/farmacocinética , Tiosemicarbazonas/uso terapéutico
9.
Ther Drug Monit ; 42(2): 264-270, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31929398

RESUMEN

BACKGROUND: In the United States, drug addiction has become a nationwide health crisis. Recently, buprenorphine (BUP), a maintenance therapy approved by the Food and Drug Administration, has been increasingly used in pregnant women for the treatment of opioid use disorder. Pregnancy is associated with various anatomic and physiological changes, which may result in altered drug pharmacokinetics (PKs). Previously, we reported that dose-adjusted plasma concentrations of BUP are lower during pregnancy than after pregnancy. The mechanism(s) responsible for this difference has not yet been defined. Our study aimed to evaluate alterations in cytochromes P450 (CYP)- and uridine diphosphate glucunosyltransferases (UGT)-mediated metabolism of BUP during pregnancy to determine the mechanism(s) responsible for this observation. METHODS: Data from 2 clinical studies were included in the current analysis. Study 1 was a prospective, open-labeled, nonrandomized longitudinal BUP PK study in pregnant women with a singleton gestation, stabilized on twice-daily sublingual BUP opioid substitution therapy. Each subject participated in up to 3 studies during and after pregnancy (the second, third trimester, and postpartum). The design of study 2 was similar to study 1, with patients evaluated at different time points during the pregnancy (first, second-half of pregnancy), as well as during the postpartum period. In addition, the dosing frequency of BUP study 2 participants was not restricted to twice-daily dosing. At each study visit, blood samples were collected before a BUP dose, followed by multiple collection times (10-12) after the dose, for up to 12 hours or till the end of the dosing interval. Plasma concentrations of BUP and 3 metabolites were quantified using validated ultraperformance liquid chromatography-tandem mass spectrometric assays. RESULTS: In total, 19, 18, and 14 subjects completed the PK study during 1/2 trimester, third trimester, and postpartum, respectively. The AUC ratios of norbuprenorphine and norbuprenorphine glucuronide to buprenorphine, a measure of CYP3A mediated N-demethylation, were 1.89, 1.84, and 1.33 during the first and second, third trimesters, and postpartum, respectively. The AUC ratios of buprenorphine glucuronide to BUP, indicative of UGT activity, were 0.71, 2.07, and 0.3 at first/second trimesters, third trimester, and postpartum, respectively. Linear mixed-effect modeling analysis indicated that the AUC ratios of CYP- and UGT-mediated metabolism of BUP were significantly higher during pregnancy compared with postpartum. CONCLUSIONS: The CYP and UGT activities were significantly increased as determined by the metabolic ratios of BUP during pregnancy compared with the postpartum period. The increased UGT activity appeared to account for a substantial part of the observed change in metabolic activity during pregnancy. This is in agreement with the need for BUP dose increment in pregnant women to reach similar BUP exposure and therapeutic effect as in nonpregnant subjects.


Asunto(s)
Buprenorfina/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Antagonistas de Narcóticos/farmacocinética , Adulto , Buprenorfina/análogos & derivados , Buprenorfina/sangre , Citocromo P-450 CYP3A/metabolismo , Femenino , Humanos , Estudios Longitudinales , Antagonistas de Narcóticos/uso terapéutico , Tratamiento de Sustitución de Opiáceos/métodos , Trastornos Relacionados con Opioides/tratamiento farmacológico , Periodo Posparto/metabolismo , Embarazo , Trimestres del Embarazo/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...