Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
2.
Plant Commun ; : 100942, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720463

RESUMEN

Feralization is an important evolutionary process, but the mechanisms behind it remain poorly understood. Here, we use the ancient fiber crop ramie (Boehmeria nivea (L.) Gaudich.) as a model to investigate genomic changes associated with both domestication and feralization. We first produced a chromosome-scale de novo genome assembly of feral ramie and investigated structural variations between feral and domesticated ramie genomes. Next, we gathered 915 accessions from 23 countries, comprising cultivars, major landraces, feral populations, and the wild progenitor. Based on whole-genome resequencing of these accessions, we constructed the most comprehensive ramie genomic variation map to date. Phylogenetic, demographic, and admixture signal detection analyses indicated that feral ramie is of exoferal or exo-endo origin, i.e., descended from hybridization between domesticated ramie and the wild progenitor or ancient landraces. Feral ramie has higher genetic diversity than wild or domesticated ramie, and genomic regions affected by natural selection during feralization differ from those under selection during domestication. Ecological analyses showed that feral and domesticated ramie have similar ecological niches that differ substantially from the niche of the wild progenitor, and three environmental variables are associated with habitat-specific adaptation in feral ramie. These findings advance our understanding of feralization, providing a scientific basis for the excavation of new crop germplasm resources and offering novel insights into the evolution of feralization in nature.

3.
Genome Biol ; 25(1): 61, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414075

RESUMEN

BACKGROUND: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.


Asunto(s)
Fagopyrum , Domesticación , Fagopyrum/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Filogenia
4.
iScience ; 27(1): 108638, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38213622

RESUMEN

Exercise training has tremendous systemic tissue-specific health benefits, but the molecular adaptations to long-term exercise training are not completely understood. We investigated the skeletal muscle proteome of highly endurance-trained, strength-trained, and untrained individuals and performed exercise- and sex-specific analyses. Of the 6,000+ proteins identified, >650 were differentially expressed in endurance-trained individuals compared with controls. Strikingly, 92% of the shared proteins with higher expression in both the male and female endurance groups were known mitochondrial. In contrast to the findings in endurance-trained individuals, minimal differences were found in strength-trained individuals and between females and males. Lastly, a co-expression network and comparative literature analysis revealed key proteins and pathways related to the health benefits of exercise, which were primarily related to differences in mitochondrial proteins. This network is available as an interactive database resource where investigators can correlate clinical data with global gene and protein expression data for hypothesis generation.

6.
Mol Metab ; 79: 101857, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141850

RESUMEN

OBJECTIVE: Long-term high-level exercise training leads to improvements in physical performance and multi-tissue adaptation following changes in molecular pathways. While skeletal muscle baseline differences between exercise-trained and untrained individuals have been previously investigated, it remains unclear how training history influences human multi-omics responses to acute exercise. METHODS: We recruited and extensively characterized 24 individuals categorized as endurance athletes with >15 years of training history, strength athletes or control subjects. Timeseries skeletal muscle biopsies were taken from M. vastus lateralis at three time-points after endurance or resistance exercise was performed and multi-omics molecular analysis performed. RESULTS: Our analyses revealed distinct activation differences of molecular processes such as fatty- and amino acid metabolism and transcription factors such as HIF1A and the MYF-family. We show that endurance athletes have an increased abundance of carnitine-derivates while strength athletes increase specific phospholipid metabolites compared to control subjects. Additionally, for the first time, we show the metabolite sorbitol to be substantially increased with acute exercise. On transcriptional level, we show that acute resistance exercise stimulates more gene expression than acute endurance exercise. This follows a specific pattern, with endurance athletes uniquely down-regulating pathways related to mitochondria, translation and ribosomes. Finally, both forms of exercise training specialize in diverging transcriptional directions, differentiating themselves from the transcriptome of the untrained control group. CONCLUSIONS: We identify a "transcriptional specialization effect" by transcriptional narrowing and intensification, and molecular specialization effects on metabolomic level Additionally, we performed multi-omics network and cluster analysis, providing a novel resource of skeletal muscle transcriptomic and metabolomic profiling in highly trained and untrained individuals.


Asunto(s)
Entrenamiento de Fuerza , Humanos , Ejercicio Físico/fisiología , Atletas , Músculo Esquelético/metabolismo , Biología de Sistemas
7.
Curr Biol ; 33(23): R1246-R1261, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38052178

RESUMEN

Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.


Asunto(s)
Cambio Climático , Productos Agrícolas , Fitomejoramiento , Agricultura , Producción de Cultivos
8.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37619981

RESUMEN

Oryza rufipogon is the wild progenitor of cultivated rice Oryza sativa and exhibits high levels of genetic diversity across its distribution, making it a useful resource for the identification of abiotic stress-tolerant varieties and genes that could limit future climate-changed-induced yield losses. To investigate local adaptation in O. rufipogon, we analyzed single nucleotide polymorphism (SNP) data from a panel of 286 samples located across a diverse range of climates. Environmental association analysis (EAA), a genome-wide association study (GWAS)-based method, was used and revealed 15 regions of the genome significantly associated with various climate factors. Genes within these environmentally associated regions have putative functions in abiotic stress response, phytohormone signaling, and the control of flowering time. This provides an insight into potential local adaptation in O. rufipogon and reveals possible locally adaptive genes that may provide opportunities for breeding novel rice varieties with climate change-resilient phenotypes.


Asunto(s)
Oryza , Oryza/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica/métodos
9.
Mol Plant ; 16(9): 1427-1444, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37649255

RESUMEN

Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.


Asunto(s)
Productos Biológicos , Fagopyrum , Fagopyrum/genética , Metagenómica , Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fertilidad
10.
Front Genet ; 14: 1193780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396035

RESUMEN

Underutilized pulses and their wild relatives are typically stress tolerant and their seeds are packed with protein, fibers, minerals, vitamins, and phytochemicals. The consumption of such nutritionally dense legumes together with cereal-based food may promote global food and nutritional security. However, such species are deficient in a few or several desirable domestication traits thereby reducing their agronomic value, requiring further genetic enhancement for developing productive, nutritionally dense, and climate resilient cultivars. This review article considers 13 underutilized pulses and focuses on their germplasm holdings, diversity, crop-wild-crop gene flow, genome sequencing, syntenic relationships, the potential for breeding and transgenic manipulation, and the genetics of agronomic and stress tolerance traits. Recent progress has shown the potential for crop improvement and food security, for example, the genetic basis of stem determinacy and fragrance in moth bean and rice bean, multiple abiotic stress tolerant traits in horse gram and tepary bean, bruchid resistance in lima bean, low neurotoxin in grass pea, and photoperiod induced flowering and anthocyanin accumulation in adzuki bean have been investigated. Advances in introgression breeding to develop elite genetic stocks of grass pea with low ß-ODAP (neurotoxin compound), resistance to Mungbean yellow mosaic India virus in black gram using rice bean, and abiotic stress adaptation in common bean, using genes from tepary bean have been carried out. This highlights their potential in wider breeding programs to introduce such traits in locally adapted cultivars. The potential of de-domestication or feralization in the evolution of new variants in these crops are also highlighted.

11.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37477910

RESUMEN

Ecological isolation is increasingly thought to play an important role in speciation, especially for the origin and reproductive isolation of homoploid hybrid species. However, the extent to which divergent and/or transgressive gene expression changes are involved in speciation is not well studied. In this study, we employ comparative transcriptomics to investigate gene expression changes associated with the origin and evolution of two homoploid hybrid plant species, Argyranthemum sundingii and A. lemsii (Asteraceae). As there is no standard methodology for comparative transcriptomics, we examined five different pipelines for data assembly and analysing gene expression across the four species (two hybrid and two parental). We note biases and problems with all pipelines, and the approach used affected the biological interpretation of the data. Using the approach that we found to be optimal, we identify transcripts showing DE between the parental taxa and between the homoploid hybrid species and their parents; in several cases, putative functions of these DE transcripts have a plausible role in ecological adaptation and could be the cause or consequence of ecological speciation. Although independently derived, the homoploid hybrid species have converged on similar expression phenotypes, likely due to adaptation to similar habitats.


Asunto(s)
Asteraceae , Hibridación Genética , Especiación Genética , Transcriptoma , Asteraceae/genética , Ecosistema
12.
Cureus ; 15(7): e42507, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37502470

RESUMEN

INTRODUCTION: Transanal irrigation (TAI) improves bowel function and quality of life in patients with neurogenic bowel disease compared to conservative bowel care. Its use has been extended to a range of defecatory disorders. However, data on long-term benefits and compliance are lacking. We aim to evaluate the long-term efficacy of TAI by examining compliance and patient outcomes over a five-year period. METHODS: This study is a five-year retrospective review of patients practising TAI in a district general hospital. Patient demographics, indications, long-term compliance, adverse events, and patient-reported Qufora bowel symptom bother scores were analysed. RESULTS: A cohort of 18 patients had a median age of 61 (range 23-91) and were predominantly female (83.5%). The reasons for bowel dysfunction were diverse: low anterior resection syndrome, neurogenic bowel, congenital anorectal malformations, obstructed defecation, and functional disorders. Predominant symptoms were constipation (9), faecal incontinence (7), and mixed (2). Both high-volume (catheter and cone) and low-volume (mini cone) irrigation devices were used. Fourteen patients continued regular irrigation at a median follow-up of 27.7 months (range 5.1-72.3), while four had discontinued at a median follow-up of 4.8 months. The reasons for discontinuation were inadequate rectal evacuation and spontaneous improvement of symptoms. In the compliant group, there was a significant improvement in bowel symptom scores (p=0.003). No major adverse events, such as significant rectal bleeding or perforation, were noted. CONCLUSION: In this small cohort, TAI was safe and effective for long-term use; however, a fifth of patients discontinued treatment. Further work needs to be done to identify those patients who will benefit from TAI.

13.
Acta Physiol (Oxf) ; 239(1): e13982, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37097015

RESUMEN

AIM: While manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time-consuming and prone to investigator bias. To address this challenge, we assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer). METHODS: We integrated recently developed deep learning-based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle, and utilized SERCA1 and SERCA2 as type-specific myonucleus and myofiber markers after validating them against the traditional use of MyHC isoforms. RESULTS: Parameters including cross-sectional area, myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber-type-specific manner, revealing that a large degree of sex- and muscle-related heterogeneity could be detected using the pipeline. Our platform was also tested on pathological muscle tissue (ALS and IBM) and adapted for the detection of other resident cell types (leucocytes, satellite cells, capillary endothelium). CONCLUSION: In summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition and structure of healthy and diseased human skeletal muscle.


Asunto(s)
Aprendizaje Profundo , Células Satélite del Músculo Esquelético , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Núcleo Celular/metabolismo
14.
Plant Cell ; 35(8): 2773-2798, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119263

RESUMEN

Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant-fungi interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buckwheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmonate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic proteinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Perfilación de la Expresión Génica , Virulencia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Resistencia a la Enfermedad/genética , Multiómica
15.
Nat Commun ; 14(1): 1915, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069152

RESUMEN

Under-utilised orphan crops hold the key to diversified and climate-resilient food systems. Here, we report on orphan crop genomics using the case of Lablab purpureus (L.) Sweet (lablab) - a legume native to Africa and cultivated throughout the tropics for food and forage. Our Africa-led plant genome collaboration produces a high-quality chromosome-scale assembly of the lablab genome. Our assembly highlights the genome organisation of the trypsin inhibitor genes - an important anti-nutritional factor in lablab. We also re-sequence cultivated and wild lablab accessions from Africa confirming two domestication events. Finally, we examine the genetic and phenotypic diversity in a comprehensive lablab germplasm collection and identify genomic loci underlying variation of important agronomic traits in lablab. The genomic data generated here provide a valuable resource for lablab improvement. Our inclusive collaborative approach also presents an example that can be explored by other researchers sequencing indigenous crops, particularly from low and middle-income countries (LMIC).


Asunto(s)
Fabaceae , Metagenómica , Fitomejoramiento , Productos Agrícolas/genética , Genoma de Planta/genética , Fabaceae/genética , Cromosomas
16.
Am J Bot ; 110(5): e16162, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990083

RESUMEN

PREMISE: Oceanic islands offer the opportunity to understand evolutionary processes underlying rapid diversification. Along with geographic isolation and ecological shifts, a growing body of genomic evidence has suggested that hybridization can play an important role in island evolution. Here we use genotyping-by-sequencing (GBS) to understand the roles of hybridization, ecology, and geographic isolation in the radiation of Canary Island Descurainia (Brassicaceae). METHODS: We carried out GBS for multiple individuals of all Canary Island species and two outgroups. Phylogenetic analyses of the GBS data were performed using both supermatrix and gene tree approaches and hybridization events were examined using D-statistics and Approximate Bayesian Computation. Climatic data were analyzed to examine the relationship between ecology and diversification. RESULTS: Analysis of the supermatrix data set resulted in a fully resolved phylogeny. Species networks suggest a hybridization event has occurred for D. gilva, with these results being supported by Approximate Bayesian Computation analysis. Strong phylogenetic signals for temperature and precipitation indicate one major ecological shift within Canary Island Descurainia. CONCLUSIONS: Inter-island dispersal played a significant role in the diversification of Descurainia, with evidence of only one major shift in climate preferences. Despite weak reproductive barriers and the occurrence of hybrids, hybridization appears to have played only a limited role in the diversification of the group with a single instance detected. The results highlight the need to use phylogenetic network approaches that can simultaneously accommodate incomplete lineage sorting and gene flow when studying groups prone to hybridization; patterns that might otherwise be obscured in species trees.


Asunto(s)
Hibridación Genética , Filogenia , España , Teorema de Bayes , Geografía
17.
Genetics ; 223(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36810660

RESUMEN

Adaptive genetic diversity in crop wild relatives (CWRs) can be exploited to develop improved crops with higher yield and resilience if phylogenetic relationships between crops and their CWRs are resolved. This further allows accurate quantification of genome-wide introgression and determination of regions of the genome under selection. Using broad sampling of CWRs and whole genome sequencing, we further demonstrate the relationships among two economically valuable and morphologically diverse Brassica crop species, their CWRs, and their putative wild progenitors. Complex genetic relationships and extensive genomic introgression between CWRs and Brassica crops were revealed. Some wild Brassica oleracea populations have admixed feral origins; some domesticated taxa in both crop species are of hybrid origin, while wild Brassica rapa is genetically indistinct from turnips. The extensive genomic introgression that we reveal could result in false identification of selection signatures during domestication using traditional comparative approaches used previously; therefore, we adopted a single-population approach to study selection during domestication. We used this to explore examples of parallel phenotypic selection in the two crop groups and highlight promising candidate genes for future investigation. Our analysis defines the complex genetic relationships between Brassica crops and their diverse CWRs, revealing extensive cross-species gene flow with implications for both crop domestication and evolutionary diversification more generally.


Asunto(s)
Brassica rapa , Brassica , Brassica/genética , Filogenia , Domesticación , Brassica rapa/genética , Productos Agrícolas/genética
18.
J Mammal ; 104(1): 115-127, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36818686

RESUMEN

Jaguars and pumas are top-predator species in the Neotropics that are threatened by habitat destruction, illegal poaching of their body parts and their favored prey, and by the human-wildlife conflicts that arise when predators attack livestock. Much of the remaining felid habitat in the Americas is in protected nature reserves that are too small and isolated to support local populations. Surrounding forests therefore play a vital role in felid conservation. Successful long-term conservation of these two felids requires evidence-based knowledge of their biological and ecological requirements. We studied population distributions of jaguars and pumas and their prey in and between two small, private reserves of the Northern Yucatán Peninsula, Mexico, with areas of 25 and 43 km2. During 2 years of camera trapping (2015 and 2016), we detected 21 jaguars, from which we estimated an average space requirement of 28-45 km2/individual. Dietary niche overlap exceeded random expectation. The most frequently occurring prey items in jaguar and puma diets were collared peccary and deer. Jaguar also favored nine-banded armadillos and white-nosed coati, while puma favored canids. Both felids avoided ocellated turkey. Overall, diet of jaguars was less species-rich, but similar in niche breadth, to that of pumas. A fluid use of space by both species, in 2015 tending toward mutual attraction and in 2016 toward partial exclusion of pumas by jaguars, combined with the high dietary overlap, is consistent with a dominance hierarchy facilitating coexistence. Jaguars and pumas favor the same prey as the people in local communities who hunt, which likely will intensify human-wildlife impacts when prey become scarce. We conclude that even small reserves play an important role in increasing the continuity of habitat for prey and large felids, whose generalist habits suppress interspecific competition for increasingly limiting prey that are largely shared between them and humans.


Los jaguares y pumas son las principales especies depredadoras del Neotrópico. Se encuentran amenazados por la destrucción de su hábitat, la caza furtiva de sus partes corporales, así como de sus presas favoritas, y por los impactos entre humanos y vida silvestre que surgen cuando estas especies atacan al ganado. Gran parte del hábitat protegido de los felinos restante en las Américas lo constituyen reservas naturales que son demasiado pequeñas y aisladas para por sí mismas sustentar las poblaciones locales de estas especies. Por lo tanto, los bosques circundantes juegan un papel vital para la conservación de estos felinos. La conservación exitosa a largo plazo de estas dos especies de felinos necesita conocimiento basado en evidencia de sus requerimientos biológicos y ecológicos. Estudiamos la distribución de poblaciones de jaguares y pumas, y sus presas, en dos pequeñas áreas protegidas privadas del norte de la península de Yucatán, México, con áreas de 25 y 43 km2, y en el área no protegida de 250 km2 que se encuentra entre ellas. Durante un estudio de foto-trampeo de dos años (2015 y 2016), detectamos 21 jaguares, a partir de los cuales estimamos requerimientos espaciales de 28­45 km2/individuo en promedio. La superposición entre nichos alimentarios superó las expectativas aleatorias. Las presas más frecuentes en las dietas del jaguar y el puma fueron el pecarí de collar y los venados. El jaguar también favoreció al armadillo de nueve bandas y coatí de nariz blanca, mientras que el puma favoreció a los cánidos. Ambos felinos evitaron al pavo ocelado. En general, la dieta de los jaguares presentó menor riqueza específica, pero similar amplitud de nicho a la de los pumas. Un uso fluido del espacio por parte de ambas especies hizo que en un año tendieran a tener atracción mutua y en otro a una exclusión parcial por parte de los jaguares a los pumas, lo cual, en combinación con la alta superposición alimentaria, es consistente con una jerarquía de dominancia que facilita la convivencia. Los jaguares y los pumas favorecieron las mismas presas que la gente que caza en las comunidades locales, lo que probablemente intensificará los impactos entre humanos y vida silvestre cuando las presas escaseen. Concluimos que incluso las reservas pequeñas desempeñan un papel importante en el aumento de la continuidad del hábitat para presas y grandes felinos, cuyos hábitos generalistas suprimen la competencia inter-específica por presas cada vez más limitadas que en gran parte comparten con los humanos.

19.
Environ Sci Technol ; 56(23): 16857-16865, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36354276

RESUMEN

The mobilization and transport of per- and poly-fluoroalkyl substances (PFASs) via surface runoff (runoff) from aqueous film-forming foam (AFFF)-contaminated soils during rainfall, flooding, or irrigation has not been thoroughly evaluated, and the effectiveness of carbonaceous sorbents in limiting PFASs in runoff is similarly unquantified. Here, laboratory-scale rainfall simulations evaluate PFAS losses in runoff and in leaching to groundwater (leachate) from AFFF-contaminated soils varying in texture, PFAS composition and concentration, and remediation treatment. Leaching dominated PFAS losses in soils with a concentration of ∑PFAS = 0.2-2 mg/kg. However, with higher soil PFAS concentrations (∑PFAS = 31 mg/kg), leachate volumes were negligible and runoff dominated losses. The concentration and variety of PFASs were far greater in leachates regardless of the initial concentrations in soil. Losses of PFASs were dependent on the C-chain length for leachates and more on the initial concentration in soil for runoff. Suspended materials did not meaningfully contribute to runoff losses. While concentrations of most PFASs declined significantly after the first rainfall event, desorption and transport in both runoff and leachates persisted over several rainfall events. Finally, results showed that sorption to AC mostly occurred during, not prior to, rainfall events and that 1% w/w AC substantially reduced losses in runoff and leachates from all soils.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Suelo , Contaminación Ambiental , Agua , Aerosoles
20.
Front Plant Sci ; 13: 1014418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340363

RESUMEN

H1s, or linker histones, are ubiquitous proteins in eukaryotic cells, consisting of a globular GH1 domain flanked by two unstructured tails. Whilst it is known that numerous non-allelic variants exist within the same species, the degree of interspecific and intraspecific variation and divergence of linker histones remain unknown. The conserved basic binding sites in GH1 and evenly distributed strong positive charges on the C-terminal domain (CTD) are key structural characters for linker histones to bind chromatin. Based on these features, we identified five linker histones from 13 GH1-containing proteins in castor bean (Ricinus communis), which were named as RcH1.1, RcH1.2a, RcH1.2b, RcH1.3, and RcH1.4 based on their phylogenetic relationships with the H1s from five other economically important Euphorbiaceae species (Hevea brasiliensis Jatropha curcas, Manihot esculenta Mercurialis annua, and Vernicia fordii) and Arabidopsis thaliana. The expression profiles of RcH1 genes in a variety of tissues and stresses were determined from RNA-seq data. We found three RcH1 genes (RcH1.1, RcH1.2a, and RcH1.3) were broadly expressed in all tissues, suggesting a conserved role in stabilizing and organizing the nuclear DNA. RcH1.2a and RcH1.4 was preferentially expressed in floral tissues, indicating potential involvement in floral development in castor bean. Lack of non-coding region and no expression detected in any tissue tested suggest that RcH1.2b is a pseudogene. RcH1.3 was salt stress inducible, but not induced by cold, heat and drought in our investigation. Structural comparison confirmed that GH1 domain was highly evolutionarily conserved and revealed that N- and C-terminal domains of linker histones are divergent between variants, but highly conserved between species for a given variant. Although the number of H1 genes varies between species, the number of H1 variants is relatively conserved in more closely related species (such as within the same family). Through comparison of nucleotide diversity of linker histone genes and oil-related genes, we found similar mutation rate of these two groups of genes. Using Tajima's D and ML-HKA tests, we found RcH1.1 and RcH1.3 may be under balancing selection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...