Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Influenza Other Respir Viruses ; 16(6): 1122-1132, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35672928

RESUMEN

BACKGROUND: Human Parainfluenza viruses (HPIV) comprise of four members of the genetically distinct genera of Respirovirus (HPIV1&3) and Orthorubulavirus (HPIV2&4), causing significant upper and lower respiratory tract infections worldwide, particularly in children. However, despite frequent molecular diagnosis, they are frequently considered collectively or with HPIV4 overlooked entirely. We therefore investigated clinical and viral epidemiological distinctions of the relatively less prevalent Orthorubulaviruses HPIV2&4 at a regional UK hospital across four autumn/winter epidemic seasons. METHODS: A retrospective audit of clinical features of all HPIV2 or HPIV4 RT-PCR-positive patients, diagnosed between 1st September 2013 and 12th April 2017 was undertaken, alongside sequencing of viral genome fragments in a representative subset of samples. RESULTS: Infection was observed across all age groups, but predominantly in children under nine and adults over 40, with almost twice as many HPIV4 as HPIV2 cases. Fever, abnormal haematology, elevated C-reactive protein and hospital admission were more frequently seen in HPIV2 than HPIV4 infection. Each of the four seasonal peaks of either HPIV2, HPIV4 or both, closely matched that of RSV, occurring in November and December and preceding that of Influenza A. A subset of viruses were partially sequenced, indicating co-circulation of multiple subtypes of both HPIV2&4, but with little variation between each epidemic season or from limited global reference sequences. CONCLUSIONS: Despite being closest known genetic relatives, our data indicates a potential difference in associated disease between HPIV2 and HPIV4, with more hospitalisation seen in HPIV2 mono-infected individuals, but a greater overall number of HPIV4 cases.


Asunto(s)
Infecciones por Paramyxoviridae , Infecciones del Sistema Respiratorio , Adulto , Proteína C-Reactiva , Niño , Genómica , Humanos , Epidemiología Molecular , Virus de la Parainfluenza 1 Humana/genética , Virus de la Parainfluenza 2 Humana/genética , Virus de la Parainfluenza 3 Humana/genética , Infecciones por Paramyxoviridae/diagnóstico , Infecciones por Paramyxoviridae/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Estudios Retrospectivos , Reino Unido/epidemiología
2.
Sci Transl Med ; 13(609): eabj0847, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34376569

RESUMEN

Understanding the impact of prior infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the response to vaccination is a priority for responding to the coronavirus disease 2019 (COVID-19) pandemic. In particular, it is necessary to understand how prior infection plus vaccination can modulate immune responses against variants of concern. To address this, we sampled 20 individuals with and 25 individuals without confirmed previous SARS-CoV-2 infection from a large cohort of health care workers followed serologically since April 2020. All 45 individuals had received two doses of the Pfizer-BioNTech BNT162b2 vaccine with a delayed booster at 10 weeks. Absolute and neutralizing antibody titers against wild-type SARS-CoV-2 and variants were measured using enzyme immunoassays and pseudotype neutralization assays. We observed antibody reactivity against lineage A, B.1.351, and P.1 variants with increasing antigenic exposure, through either vaccination or natural infection. This improvement was further confirmed in neutralization assays using fixed dilutions of serum samples. The impact of antigenic exposure was more evident in enzyme immunoassays measuring SARS-CoV-2 spike protein­specific IgG antibody concentrations. Our data show that multiple exposures to SARS-CoV-2 spike protein in the context of a delayed booster expand the neutralizing breadth of the antibody response to neutralization-resistant SARS-CoV-2 variants. This suggests that additional vaccine boosts may be beneficial in improving immune responses against future SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Formación de Anticuerpos , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos
3.
J Gen Virol ; 102(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34130773

RESUMEN

In the early phases of the SARS coronavirus type 2 (SARS-CoV-2) pandemic, testing focused on individuals fitting a strict case definition involving a limited set of symptoms together with an identified epidemiological risk, such as contact with an infected individual or travel to a high-risk area. To assess whether this impaired our ability to detect and control early introductions of the virus into the UK, we PCR-tested archival specimens collected on admission to a large UK teaching hospital who retrospectively were identified as having a clinical presentation compatible with COVID-19. In addition, we screened available archival specimens submitted for respiratory virus diagnosis, and dating back to early January 2020, for the presence of SARS-CoV-2 RNA. Our data provides evidence for widespread community circulation of SARS-CoV-2 in early February 2020 and into March that was undetected at the time due to restrictive case definitions informing testing policy. Genome sequence data showed that many of these early cases were infected with a distinct lineage of the virus. Sequences obtained from the first officially recorded case in Nottinghamshire - a traveller returning from Daegu, South Korea - also clustered with these early UK sequences suggesting acquisition of the virus occurred in the UK and not Daegu. Analysis of a larger sample of sequences obtained in the Nottinghamshire area revealed multiple viral introductions, mainly in late February and through March. These data highlight the importance of timely and extensive community testing to prevent future widespread transmission of the virus.


Asunto(s)
COVID-19/diagnóstico , COVID-19/virología , Sistema Respiratorio/virología , SARS-CoV-2/aislamiento & purificación , Adulto , Anciano , COVID-19/epidemiología , COVID-19/transmisión , Prueba de Ácido Nucleico para COVID-19 , Femenino , Humanos , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Filogenia , ARN Viral/genética , Estudios Retrospectivos , SARS-CoV-2/genética , Reino Unido/epidemiología
4.
Viruses ; 12(4)2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316655

RESUMEN

Orthohantaviruses are globally distributed viruses, associated with rodents and other small mammals. However, data on the circulation of orthohantaviruses within the UK, particularly the UK-endemic Tatenale virus, is sparse. In this study, 531 animals from five rodent species were collected from two locations in northern and central England and screened using a degenerate, pan- orthohantavirus RT-PCR assay. Tatenale virus was detected in a single field vole (Microtus agrestis) from central England and twelve field voles from northern England. Unbiased high-throughput sequencing of the central English strain resulted in the recovery of the complete coding sequence of a novel strain of Tatenale virus, whilst PCR-primer walking of the northern English strain recovered almost complete coding sequence of a previously identified strain. These findings represented the detection of a third lineage of Tatenale virus in the United Kingdom and extended the known geographic distribution of these viruses from northern to central England. Furthermore, the recovery of the complete coding sequence revealed that Tatenale virus was sufficiently related to the recently identified Traemersee virus, to meet the accepted criteria for classification as a single species of orthohantavirus.


Asunto(s)
Variación Genética , Sistemas de Lectura Abierta , Orthohantavirus/clasificación , Orthohantavirus/genética , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Viral , Análisis de Secuencia de ARN , Reino Unido
5.
Artículo en Inglés | MEDLINE | ID: mdl-33383781

RESUMEN

We aimed to explore student and staff perceptions and experiences of a pilot SARS-CoV-2 asymptomatic testing service (P-ATS) in a UK university campus setting. This was a mixed-method study comprised of an online survey, and thematic analysis of qualitative data from interviews and focus groups conducted at the mid-point and end of the 12-week P-ATS programme. Ninety-nine students (84.8% female, 70% first year; 93.9% P-ATS participants) completed an online survey, 41 individuals attended interviews or focus groups, including 31 students (21 first year; 10 final year) and 10 staff. All types of testing and logistics were highly acceptable (virus: swab, saliva; antibody: finger prick) and 94.9% would participate again. Reported adherence to weekly virus testing was high (92.4% completed ≥6 tests; 70.8% submitted all 10 swabs; 89.2% completed ≥1 saliva sample) and 76.9% submitted ≥3 blood samples. Students tested to "keep campus safe", "contribute to national efforts to control COVID-19", and "protect others". In total, 31.3% had high anxiety as measured by the Generalized Anxiety Disorder scale (GAD-7) (27.1% of first year). Students with lower levels of anxiety and greater satisfaction with university communications around P-ATS were more likely to adhere to virus and antibody tests. Increased adherence to testing was associated with higher perceived risk of COVID-19 to self and others. Qualitative findings revealed 5 themes and 13 sub-themes: "emotional responses to COVID-19", "university life during COVID-19", "influences on testing participation", "testing physical and logistical factors" and "testing effects on mental wellbeing". Asymptomatic COVID-19 testing (SARS-CoV-2 virus/antibodies) is highly acceptable to students and staff in a university campus setting. Clear communications and strategies to reduce anxiety are likely to be important for testing uptake and adherence. Strategies are needed to facilitate social connections and mitigate the mental health impacts of COVID-19 and self-isolation.


Asunto(s)
Infecciones Asintomáticas , Prueba de COVID-19 , COVID-19/diagnóstico , COVID-19/psicología , Femenino , Humanos , Masculino , Manejo de Especímenes , Encuestas y Cuestionarios , Reino Unido , Universidades , Adulto Joven
7.
Viruses ; 11(2)2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704076

RESUMEN

The recent discovery of novel alphacoronaviruses (alpha-CoVs) in European and Asian rodents revealed that rodent coronaviruses (CoVs) sampled worldwide formed a discrete phylogenetic group within this genus. To determine the evolutionary history of rodent CoVs in more detail, particularly the relative frequencies of virus-host co-divergence and cross-species transmission, we recovered longer fragments of CoV genomes from previously discovered European rodent alpha-CoVs using a combination of PCR and high-throughput sequencing. Accordingly, the full genome sequence was retrieved from the UK rat coronavirus, along with partial genome sequences from the UK field vole and Poland-resident bank vole CoVs, and a short conserved ORF1b fragment from the French rabbit CoV. Genome and phylogenetic analysis showed that despite their diverse geographic origins, all rodent alpha-CoVs formed a single monophyletic group and shared similar features, such as the same gene constellations, a recombinant beta-CoV spike gene, and similar core transcriptional regulatory sequences (TRS). These data suggest that all rodent alpha CoVs sampled so far originate from a single common ancestor, and that there has likely been a long-term association between alpha CoVs and rodents. Despite this likely antiquity, the phylogenetic pattern of the alpha-CoVs was also suggestive of relatively frequent host-jumping among the different rodent species.


Asunto(s)
Alphacoronavirus/clasificación , Evolución Molecular , Genoma Viral , Roedores/virología , Animales , Arvicolinae/virología , Asia , Coronavirus/genética , Infecciones por Coronavirus/transmisión , Europa (Continente) , Variación Genética , Murinae/virología , Filogenia , Conejos/virología , Ratas/virología , Recombinación Genética , Análisis de Secuencia de ADN
8.
Viruses ; 12(1)2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906044

RESUMEN

The advent of unbiased metagenomic virus discovery has revolutionized studies of virus biodiversity and evolution. Despite this, our knowledge of the virosphere, including in mammalian species, remains limited. We used unbiased metagenomic sequencing to identify RNA viruses in European field voles and rabbits. Accordingly, we identified a number of novel RNA viruses including astrovirus, rotavirus A, picorna-like virus and a morbilli-like paramyxovirus. In addition, we identified a sobemovirus and a novel luteovirus that likely originated from the rabbit diet. These newly discovered viruses were often divergent from those previously described. The novel astrovirus was most closely related to a virus sampled from the rodent-eating European roller bird (Coracias garrulous). PCR screening revealed that the novel morbilli-like paramyxovirus in the UK field vole had a prevalence of approximately 4%, and shared common ancestry with other rodent morbilli-like viruses sampled globally. Two novel rotavirus A sequences were detected in a UK field vole and a French rabbit, the latter with a prevalence of 5%. Finally, a highly divergent picorna-like virus found in the gut of the French rabbit virus was only ~35% similar to an arilivirus at the amino acid level, suggesting the presence of a novel viral genus within the Picornaviridae.


Asunto(s)
Arvicolinae/virología , Virus ARN/aislamiento & purificación , Conejos/virología , Animales , Animales Salvajes/virología , Astroviridae/clasificación , Astroviridae/aislamiento & purificación , Conducta Alimentaria , Genoma Viral , Filogenia , Picornaviridae/clasificación , Picornaviridae/aislamiento & purificación , Prevalencia , Virus ARN/clasificación , ARN Viral/genética , Análisis de Secuencia de ADN , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA